Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
New Phytol ; 224(1): 421-438, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31111491

RESUMO

BIR1 is a receptor-like kinase that functions as a negative regulator of basal immunity and cell death in Arabidopsis. Using Arabidopsis thaliana and Tobacco rattle virus (TRV), we investigate the antiviral role of BIR1, the molecular mechanisms of BIR1 gene expression regulation during viral infections, and the effects of BIR1 overexpression on plant immunity and development. We found that SA acts as a signal molecule for BIR1 activation during infection. Inactivating mutations of BIR1 in the bir1-1 mutant cause strong antiviral resistance independently of constitutive cell death or SA defense priming. BIR1 overexpression leads to severe developmental defects, cell death and premature death, which correlate with the constitutive activation of plant immune responses. Our findings suggest that BIR1 acts as a negative regulator of antiviral defense in plants, and indicate that RNA silencing contributes, alone or in conjunction with other regulatory mechanisms, to define a threshold expression for proper BIR1 function beyond which an autoimmune response may occur. This work provides novel mechanistic insights into the regulation of BIR1 homeostasis that may be common for other plant immune components.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/virologia , Imunidade Vegetal/genética , Vírus de Plantas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transcrição Gênica , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Metilação de DNA/genética , Inativação Gênica , Mutação/genética , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Ácido Salicílico/farmacologia , Regulação para Cima/genética
2.
J Gen Virol ; 97(1): 246-257, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26498945

RESUMO

The cysteine-rich 16K protein of tobacco rattle virus (TRV), the type member of the genus Tobravirus, is known to suppress RNA silencing. However, the mechanism of action of the 16K suppressor is not well understood. In this study, we used a GFP-based sensor strategy and an Agrobacterium-mediated transient assay in Nicotiana benthamiana to show that 16K was unable to inhibit the activity of existing small interfering RNA (siRNA)- and microRNA (miRNA)-programmed RNA-induced silencing effector complexes (RISCs). In contrast, 16K efficiently interfered with de novo formation of miRNA- and siRNA-guided RISCs, thus preventing cleavage of target RNA. Interestingly, we found that transiently expressed endogenous miR399 and miR172 directed sequence-specific silencing of complementary sequences of viral origin. 16K failed to bind small RNAs, although it interacted with ARGONAUTE 4, as revealed by bimolecular fluorescence complementation and immunoprecipitation assays. Site-directed mutagenesis demonstrated that highly conserved cysteine residues within the N-terminal and central regions of the 16K protein are required for protein stability and/or RNA silencing suppression.


Assuntos
Interações Hospedeiro-Patógeno , Vírus de Plantas/fisiologia , Interferência de RNA , Vírus de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo , Ligação Proteica , Vírus de RNA/imunologia , Nicotiana/imunologia , Nicotiana/virologia
3.
Plant Physiol ; 166(4): 1821-38, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25358898

RESUMO

During compatible virus infections, plants respond by reprogramming gene expression and metabolite content. While gene expression studies are profuse, our knowledge of the metabolic changes that occur in the presence of the virus is limited. Here, we combine gene expression and metabolite profiling in Arabidopsis (Arabidopsis thaliana) infected with Tobacco rattle virus (TRV) in order to investigate the influence of primary metabolism on virus infection. Our results revealed that primary metabolism is reconfigured in many ways during TRV infection, as reflected by significant changes in the levels of sugars and amino acids. Multivariate data analysis revealed that these alterations were particularly conspicuous at the time points of maximal accumulation of TRV, although infection time was the dominant source of variance during the process. Furthermore, TRV caused changes in lipid and fatty acid composition in infected leaves. We found that several Arabidopsis mutants deficient in branched-chain amino acid catabolism or fatty acid metabolism possessed altered susceptibility to TRV. Finally, we showed that increments in the putrescine content in TRV-infected plants correlated with enhanced tolerance to freezing stress in TRV-infected plants and that impairment of putrescine biosynthesis promoted virus multiplication. Our results thus provide an interesting overview for a better understanding of the relationship between primary metabolism and virus infection.


Assuntos
Arabidopsis/imunologia , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Aminoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Arabidopsis/genética , Arabidopsis/virologia , Suscetibilidade a Doenças , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Lipídeos , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Vírus de Plantas/fisiologia , Putrescina/metabolismo , Vírus de RNA/fisiologia , Replicação Viral
4.
New Phytol ; 199(1): 212-227, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23627500

RESUMO

Plants have evolved efficient defence mechanisms to defend themselves from pathogen attack. Although many studies have focused on the transcriptional regulation of defence responses, less is known about the involvement of microRNAs (miRNAs) as post-transcriptional regulators of gene expression in plant immunity. This work investigates miRNAs that are regulated by elicitors from the blast fungus Magnaporthe oryzae in rice (Oryza sativa). Small RNA libraries were constructed from rice tissues and subjected to high-throughput sequencing for the identification of elicitor-responsive miRNAs. Target gene expression was examined by microarray analysis. Transgenic lines were used for the analysis of miRNA functioning in disease resistance. Elicitor treatment is accompanied by dynamic alterations in the expression of a significant number of miRNAs, including new members of annotated miRNAs. Novel miRNAs from rice are proposed. We report a new rice miRNA, osa-miR7695, which negatively regulates an alternatively spliced transcript of OsNramp6 (Natural resistance-associated macrophage protein 6). This novel miRNA experienced natural and domestication selection events during evolution, and its overexpression in rice confers pathogen resistance. This study highlights an miRNA-mediated regulation of OsNramp6 in disease resistance, whilst illustrating the existence of a novel regulatory network that integrates miRNA function and mRNA processing in plant immunity.


Assuntos
Processamento Alternativo , MicroRNAs/metabolismo , Oryza/genética , Oryza/microbiologia , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Reprodutibilidade dos Testes , Especificidade da Espécie , Nicotiana/genética
5.
New Phytol ; 195(1): 47-57, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22494113

RESUMO

• We have reported previously that the gibberellin (GA) content in strawberry receptacle is high, peaking at specific stages, pointing to a role of this hormone in fruit development. In Arabidopsis, miR159 levels are dependent on GA concentration. This prompted us to investigate the role of two members of the miR159 family and their putative strawberry target gene, GAMYB, in relation to changes in GA content during the course of fruit development. • The highest expression level of the two Fa-MIR159 genes was in the fruit's receptacle tissue, with dramatic changes observed throughout development. The lowest levels of total mature miR159 (a and b) were observed during the white stage of receptacle development, which was concurrent with the highest expression of Fa-GAMYB. A functional interaction between miR159 and Fa-GAMYB has been demonstrated in receptacle tissue. • The application of bioactive GA (i.e. GA(3) ) to strawberry plants caused the down-regulated expression of Fa-MIR159a, but the expression of Fa-MIR159b was not affected significantly. Clear discrepancies between Fa-MIR159b and mature Fa-miR159b levels were indicative of post-transcriptional regulation of Fa-MIR159b gene expression. • We propose that Fa-miR159a and Fa-miR159b interact with Fa-GAMYB during the course of strawberry receptacle development, and that they act in a cooperative fashion to respond, in part, to changes in GA endogenous levels.


Assuntos
Fragaria/crescimento & desenvolvimento , Fragaria/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , MicroRNAs , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Fragaria/metabolismo , Genes de Plantas , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
BMC Genomics ; 12: 393, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21812964

RESUMO

BACKGROUND: Melon (Cucumis melo L.) is a commercially important fruit crop that is cultivated worldwide. The melon research community has recently benefited from the determination of a complete draft genome sequence and the development of associated genomic tools, which have allowed us to focus on small RNAs (sRNAs). These are short, non-coding RNAs 21-24 nucleotides in length with diverse physiological roles. In plants, they regulate gene expression and heterochromatin assembly, and control protection against virus infection. Much remains to be learned about the role of sRNAs in melon. RESULTS: We constructed 10 sRNA libraries from two stages of developing ovaries, fruits and photosynthetic cotyledons infected with viruses, and carried out high-throughput pyrosequencing. We catalogued and analysed the melon sRNAs, resulting in the identification of 26 known miRNA families (many conserved with other species), the prediction of 84 melon-specific miRNA candidates, the identification of trans-acting siRNAs, and the identification of chloroplast, mitochondrion and transposon-derived sRNAs. In silico analysis revealed more than 400 potential targets for the conserved and novel miRNAs. CONCLUSION: We have discovered and analysed a large number of conserved and melon-specific sRNAs, including miRNAs and their potential target genes. This provides insight into the composition and function of the melon small RNAome, and paves the way towards an understanding of sRNA-mediated processes that regulate melon fruit development and melon-virus interactions.


Assuntos
Cucumis melo/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Plantas/genética , Pequeno RNA não Traduzido/genética , Sequência de Bases , Carmovirus/fisiologia , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/imunologia , Cotilédone/virologia , Cucumis melo/crescimento & desenvolvimento , Cucumis melo/imunologia , Cucumis melo/virologia , Resistência à Doença/genética , Biblioteca Gênica , MicroRNAs/genética , Fotossíntese/genética , Polinização/genética , Potyvirus/fisiologia , Especificidade da Espécie , Transcriptoma
7.
Plant J ; 59(5): 840-50, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19453461

RESUMO

MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are two classes of abundant 21-24 nucleotide small RNAs (smRNAs) that control gene expression in plants, mainly by guiding cleavage and degradation of target transcripts. Target identification based on predictive algorithms for base-paired complementarity requires further experimental validation and often fails to recognize miRNA::target pairs that escape from stringent complementarity rules. Here, we report on a microarray-based methodology to identify target mRNAs of miRNAs and siRNAs at a genomic scale. This strategy takes advantage of the RNA ligase-mediated amplification of 5' cDNA ends (RLM-RACE) to isolate miRNA or siRNA cleavage products from biological samples. Cleaved transcripts are then subjected to T7 RNA polymerase-mediated amplification and microarray hybridizations. The use of suitable hybridization controls is what makes our strategy outperform previous analyses. We applied this method and identified more than 100 putative novel miRNA or siRNA target mRNAs that had not been previously predicted by computational or microarray-based methods. Our data expand the regulatory role of endogenous smRNAs to a wide range of cellular processes, with prevalence in the regulation of cellular solute homeostasis. The methodology described here is straightforward, avoids extensive computational analysis and allows simultaneous analyses of several biological replicates, thus reducing the biological variability inherent in genomic analysis. The application of this simple methodology offers a framework for systematic analysis of smRNA-guided cleaved transcriptomes in different plant tissues, genotypes or stress conditions, and should contribute to understanding of the physiological role of smRNAs in plants.


Assuntos
MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Interferente Pequeno/genética , Análise de Sequência de RNA/métodos , Arabidopsis/genética , Genoma de Planta , Sondas RNA , RNA Mensageiro/genética , RNA de Plantas/genética
8.
Mol Plant Microbe Interact ; 23(3): 294-303, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20121451

RESUMO

The RNA silencing suppressor activity of the 2b protein of Cucumber mosaic virus (CMV) has been variously attributed to its nuclear targeting, its interaction with and inhibition of Argonaute 1 (AGO1), or its ability to bind small RNAs in vitro. In addition, the 2b ortholog of Tomato aspermy virus forms aggregates and binds RNAs in vitro. We have further studied the relationships between CMV 2b protein silencing suppressor activity and its subcellular distribution, protein-protein interactions in vivo, and interactions with small interfering RNAs in vitro. To do this, we tagged the protein with fluorescent markers and showed that it retained suppressor activity. We showed that the 2b protein is present in the nucleolus and that it self-interacts and interacts with AGO1 and AGO4 in vivo. Using a battery of mutants, we showed that the putative nuclear localization signals and phosphorylation motif of the 2b protein are not required for self-interaction or for interaction with AGO proteins. The occurrence of neither of these interactions or of nucleolar targeting was sufficient to provide local silencing-suppression activity. In contrast, the ability of the 2b protein to bind small RNAs appears to be indispensable for silencing suppressor function.


Assuntos
Cucumovirus/metabolismo , Interferência de RNA , Proteínas Virais/metabolismo , Cucumovirus/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Sinais de Localização Nuclear/genética , Fosforilação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas Virais/genética
9.
Commun Biol ; 3(1): 702, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230160

RESUMO

Virus-induced plant diseases in cultivated plants cause important damages in yield. Although the mechanisms of virus infection are intensely studied at the cell biology level, only little is known about the molecular dialog between the invading virus and the host genome. Here we describe a combinatorial genome-wide approach to identify networks of sRNAs-guided post-transcriptional regulation within local Turnip mosaic virus (TuMV) infection sites in Brassica napus leaves. We show that the induction of host-encoded, virus-activated small interfering RNAs (vasiRNAs) observed in virus-infected tissues is accompanied by site-specific cleavage events on both viral and host RNAs that recalls the activity of small RNA-induced silencing complexes (RISC). Cleavage events also involve virus-derived siRNA (vsiRNA)-directed cleavage of target host transcripts as well as cleavage of viral RNA by both host vasiRNAs and vsiRNAs. Furthermore, certain coding genes act as virus-activated regulatory hubs to produce vasiRNAs for the targeting of other host genes. The observations draw an advanced model of plant-virus interactions and provide insights into the complex regulatory networking at the plant-virus interface within cells undergoing early stages of infection.


Assuntos
Brassica napus , Interações Hospedeiro-Patógeno/genética , Potyvirus , RNA Interferente Pequeno , Brassica napus/genética , Brassica napus/virologia , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Genoma Viral/genética , Potyvirus/genética , Potyvirus/patogenicidade , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , RNA Viral/metabolismo
10.
Dev Cell ; 4(2): 205-17, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12586064

RESUMO

The molecular basis for virus-induced disease in plants has been a long-standing mystery. Infection of Arabidopsis by Turnip mosaic virus (TuMV) induces a number of developmental defects in vegetative and reproductive organs. We found that these defects, many of which resemble those in miRNA-deficient dicer-like1 (dcl1) mutants, were due to the TuMV-encoded RNA-silencing suppressor, P1/HC-Pro. Suppression of RNA silencing is a counterdefensive mechanism that enables systemic infection by TuMV. The suppressor interfered with the activity of miR171 (also known as miRNA39), which directs cleavage of several mRNAs coding for Scarecrow-like transcription factors, by inhibiting miR171-guided nucleolytic function. Out of ten other mRNAs that were validated as miRNA-guided cleavage targets, eight accumulated to elevated levels in the presence of P1/HC-Pro. The basis for TuMV- and other virus-induced disease in plants may be explained, at least partly, by interference with miRNA-controlled developmental pathways that share components with the antiviral RNA-silencing pathway.


Assuntos
Arabidopsis/genética , Cisteína Endopeptidases/genética , MicroRNAs/fisiologia , Estruturas Vegetais/virologia , Interferência de RNA/fisiologia , Tymovirus/patogenicidade , Proteínas Virais/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Northern Blotting , Cisteína Endopeptidases/metabolismo , Primers do DNA/química , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Immunoblotting , Microscopia Eletrônica de Varredura , Microscopia de Polarização , Mutagênese Sítio-Dirigida , Estruturas Vegetais/genética , Estruturas Vegetais/metabolismo , Plantas Geneticamente Modificadas , Plasmídeos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas Virais/metabolismo
11.
J Virol ; 82(11): 5167-77, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18353962

RESUMO

In plants, small RNA-guided processes referred to as RNA silencing control gene expression and serve as an efficient antiviral mechanism. Plant viruses are inducers and targets of RNA silencing as infection involves the production of functional virus-derived small interfering RNAs (siRNAs). Here we investigate the structural and genetic components influencing the formation of Tobacco rattle virus (TRV)-derived siRNAs. TRV siRNAs are mostly 21 nucleotides in length and derive from positive and negative viral RNA strands, although TRV siRNAs of positive polarity are significantly more abundant. This asymmetry appears not to correlate with the presence of highly structured regions of single-stranded viral RNA. The Dicer-like enzyme DCL4, DCL3, or DCL2 targets, alone or in combination, viral templates to promote synthesis of siRNAs of both polarities from all regions of the viral genome. The heterogeneous distribution profile of TRV siRNAs reveals differential contributions throughout the TRV genome to siRNA formation. Indirect evidence suggests that DCL2 is responsible for production of a subset of siRNAs derived from the 3' end region of TRV. TRV siRNA biogenesis and antiviral silencing are strongly dependent on the combined activity of the host-encoded RNA-dependent RNA polymerases RDR1, RDR2, and RDR6, thus providing evidence that perfectly complementary double-stranded RNA serves as a substrate for siRNA production. We conclude that the overall composition of viral siRNAs in TRV-infected plants reflects the combined action of several interconnected pathways involving different DCL and RDR activities.


Assuntos
Nicotiana/virologia , Vírus de RNA/genética , Vírus de RNA/metabolismo , RNA Interferente Pequeno/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Genoma Viral/genética , Mutação/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
12.
Methods Mol Biol ; 2028: 185-214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31228116

RESUMO

In this chapter we describe a series of computational pipelines for the in silico analysis of small RNAs (sRNA) produced in response to viral infections in plants. Our workflow is primarily focused on the analysis of sRNA populations derived from known or previously undescribed viruses infecting host plants. Furthermore, we provide an additional pipeline to examine host-specific endogenous sRNAs activated or specifically expressed during viral infections in plants. We present some key points for a successful and cost-efficient processing of next generation sequencing sRNA libraries, from purification of high quality RNA to guidance for library preparation and sequencing strategies. We report a series of free available tools and programs as well as in-house Perl scripts to perform customized sRNA-seq data mining. Previous bioinformatic background is not required, but experience with basic Unix commands is desirable.


Assuntos
Biologia Computacional , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Plantas/virologia , Pequeno RNA não Traduzido , RNA Viral , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Software
13.
Mol Plant Pathol ; 20(10): 1439-1452, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31274236

RESUMO

DNA methylation is an important epigenetic mechanism for controlling innate immunity against microbial pathogens in plants. Little is known, however, about the manner in which viral infections interact with DNA methylation pathways. Here we investigate the crosstalk between epigenetic silencing and viral infections in Arabidopsis inflorescences. We found that tobacco rattle virus (TRV) causes changes in the expression of key transcriptional gene silencing factors with RNA-directed DNA methylation activities that coincide with changes in methylation at the whole genome level. Viral susceptibility/resistance was altered in DNA (de)methylation-deficient mutants, suggesting that DNA methylation is an important regulatory system controlling TRV proliferation. We further show that several transposable elements (TEs) underwent transcriptional activation during TRV infection, and that TE regulation likely involved both DNA methylation-dependent and -independent mechanisms. We identified a cluster of disease resistance genes regulated by DNA methylation in infected plants that were enriched for TEs in their promoters. Interestingly, TEs and nearby resistance genes were co-regulated in TRV-infected DNA (de)methylation mutants. Our study shows that DNA methylation contributes to modulate the outcome of viral infections in Arabidopsis, and opens up new possibilities for exploring the role of TE regulation in antiviral defence.


Assuntos
Arabidopsis/genética , Arabidopsis/virologia , Vírus de Plantas/patogenicidade , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/fisiologia , Epigênese Genética/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica
14.
Curr Opin Virol ; 19: 50-5, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27442236

RESUMO

Upon infection plant viruses modulate cellular functions and resources to survive and reproduce. Plant cells in which the virus is replicating are transformed into strong metabolic sinks. This conversion gives rise to a massive reprogramming of plant primary metabolism. Such a metabolic shift involves perturbations in carbohydrates, amino acids and lipids that eventually lead to increase respiration rates, and/or decrease in photosynthetic activity. By doing so, plants provide metabolic acclimation against cellular stress and meet the increased demand for energy needed to sustain virus multiplication and defense responses against viruses. This review will highlight our current knowledge pertaining to the contribution of primary metabolism to the outcome of viral infections in plants.


Assuntos
Fenômenos Fisiológicos Celulares , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Vírus de Plantas/metabolismo , Plantas/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Plantas/virologia , Estresse Fisiológico , Replicação Viral
15.
Mol Plant Pathol ; 17(1): 3-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25787925

RESUMO

Virus infections in plants cause changes in host gene expression that are common to other environmental stresses. In this work, we found extensive overlap in the transcriptional responses between Arabidopsis thaliana plants infected with Tobacco rattle virus (TRV) and plants undergoing senescence. This is exemplified by the up-regulation during infection of several senescence-associated Dark-inducible (DIN) genes, including AtDIN1 (Senescence 1, SEN1), AtDIN6 (Asparagine synthetase 1, AtASN1) and AtDIN11. DIN1, DIN6 and DIN11 homologues were also activated in Nicotiana benthamiana in response to TRV and Potato virus X (PVX) infection. Reduced TRV levels in RNA interference (RNAi) lines targeting AtDIN11 indicate that DIN11 is an important modulator of susceptibility to TRV in Arabidopsis. Furthermore, low accumulation of TRV in Arabidopsis protoplasts from RNAi lines suggests that AtDIN11 supports virus multiplication in this species. The effect of DIN6 on virus accumulation was negligible in Arabidopsis, perhaps as a result of gene or functional redundancy. However, TRV-induced silencing of NbASN, the DIN6 homologue in N. benthamiana, compromises TRV and PVX accumulation in systemically infected leaves. Interestingly, NbASN inactivation correlates with the appearance of morphological defects in infected leaves. We found that DIN6 and DIN11 regulate virus multiplication in a step prior to the activation of plant defence responses. We hypothesize on the possible roles of DIN6 and DIN11 during virus infection.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Doenças das Plantas/genética , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Escuridão , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Inativação Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Potexvirus/fisiologia , Nicotiana/genética , Nicotiana/virologia
16.
Virus Res ; 102(1): 85-96, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15068884

RESUMO

RNA silencing occurs in a wide variety of organisms, including protozoa, fungi, plants and animals and involves recognition of a target RNA and initiation of a sequence-specific RNA degradation pathway in the cytoplasm. In the last few years, there have been considerable advances in our understanding of post-transcriptional gene silencing (PTGS). This mechanism is conceived as a natural antiviral defense system in plants that is activated as a response to double-stranded RNA (dsRNA) formed during virus replication. To develop new approaches for plant protection against virus diseases based on PTGS we have expanded previous findings on RNA interference (RNAi) in animals by using dsRNA to specifically interfere with virus infection in plants. This approach differs from strategies based on transgenic expression of RNAs but still relies on PTGS as a means to achieve pathogen-derived resistance (PDR). Our findings suggest that exogenously supplied dsRNA could form the basis for the development of an environmentally safe, new biotechnological tool aimed at protecting crops against virus diseases, provided that some limitations of the current status of the approach could be overcome.


Assuntos
Biotecnologia/métodos , MicroRNAs/genética , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Interferência de RNA , Produtos Agrícolas , MicroRNAs/metabolismo , Vírus de Plantas/genética , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA de Cadeia Dupla/metabolismo
17.
PLoS One ; 7(7): e40526, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808182

RESUMO

Understanding the mechanisms by which plants trigger host defenses in response to viruses has been a challenging problem owing to the multiplicity of factors and complexity of interactions involved. The advent of genomic techniques, however, has opened the possibility to grasp a global picture of the interaction. Here, we used Arabidopsis thaliana to identify and compare genes that are differentially regulated upon infection with seven distinct (+)ssRNA and one ssDNA plant viruses. In the first approach, we established lists of genes differentially affected by each virus and compared their involvement in biological functions and metabolic processes. We found that phylogenetically related viruses significantly alter the expression of similar genes and that viruses naturally infecting Brassicaceae display a greater overlap in the plant response. In the second approach, virus-regulated genes were contextualized using models of transcriptional and protein-protein interaction networks of A. thaliana. Our results confirm that host cells undergo significant reprogramming of their transcriptome during infection, which is possibly a central requirement for the mounting of host defenses. We uncovered a general mode of action in which perturbations preferentially affect genes that are highly connected, central and organized in modules.


Assuntos
Arabidopsis/genética , Arabidopsis/virologia , Vírus de Plantas/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Genes de Plantas/genética , Redes e Vias Metabólicas/genética , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Mapas de Interação de Proteínas , Biologia de Sistemas
18.
PLoS One ; 6(5): e19523, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21603611

RESUMO

Micro RNAS (miRNAs) are a class of endogenous small non coding RNAs involved in the post-transcriptional regulation of gene expression. In plants, a great number of conserved and specific miRNAs, mainly arising from model species, have been identified to date. However less is known about the diversity of these regulatory RNAs in vegetal species with agricultural and/or horticultural importance. Here we report a combined approach of bioinformatics prediction, high-throughput sequencing data and molecular methods to analyze miRNAs populations in cucumber (Cucumis sativus) plants. A set of 19 conserved and 6 known but non-conserved miRNA families were found in our cucumber small RNA dataset. We also identified 7 (3 with their miRNA* strand) not previously described miRNAs, candidates to be cucumber-specific. To validate their description these new C. sativus miRNAs were detected by northern blot hybridization. Additionally, potential targets for most conserved and new miRNAs were identified in cucumber genome.In summary, in this study we have identified, by first time, conserved, known non-conserved and new miRNAs arising from an agronomically important species such as C. sativus. The detection of this complex population of regulatory small RNAs suggests that similarly to that observe in other plant species, cucumber miRNAs may possibly play an important role in diverse biological and metabolic processes.


Assuntos
Cucumis sativus/genética , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Sequência Conservada/genética , RNA de Plantas/genética , Análise de Sequência de RNA/métodos
19.
Methods Mol Biol ; 732: 187-208, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21431714

RESUMO

microRNAs (miRNAs) regulate gene expression through sequence-specific interactions with cognate mRNAs that result in translational inhibition, mRNA decay, or slicing within the region of complementarity. miRNA processing activity on complementary target mRNAs generates 3' end cleavage products that contain -ligation-competent, 5'-monophosphates. Precise mapping of miRNA-directed cleavage sites within target transcripts is, therefore, possible using RNA ligase-mediated 5' amplification of cDNA ends (RLM-RACE). Here, we provide a comprehensive RLM-RACE-based protocol for the amplification of 5' ends derived from cleaved transcripts resulting from miRNA-guided cleavage events. Novel strategies for high-throughput analysis of miRNA cleavage products have emerged as powerful tools for the novo identification of miRNA targets in a genomic perspective. In this work, we also describe a novel methodology for genome-wide identification of miRNA targets that exploits RLM-RACE for non-sequence-specific enrichment of cleaved transcripts, T7 RNA polymerase-mediated amplification of target products, and microarray hybridization.


Assuntos
MicroRNAs/genética , RNA Mensageiro/análise , RNA de Plantas/genética , Análise de Sequência de RNA/métodos , RNA Mensageiro/genética , RNA de Plantas/análise
20.
PLoS One ; 6(11): e27916, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22140484

RESUMO

Small RNAs (sRNAs) of 20 to 25 nucleotides (nt) in length maintain genome integrity and control gene expression in a multitude of developmental and physiological processes. Despite RNA silencing has been primarily studied in model plants, the advent of high-throughput sequencing technologies has enabled profiling of the sRNA component of more than 40 plant species. Here, we used deep sequencing and molecular methods to report the first inventory of sRNAs in olive (Olea europaea L.). sRNA libraries prepared from juvenile and adult shoots revealed that the 24-nt class dominates the sRNA transcriptome and atypically accumulates to levels never seen in other plant species, suggesting an active role of heterochromatin silencing in the maintenance and integrity of its large genome. A total of 18 known miRNA families were identified in the libraries. Also, 5 other sRNAs derived from potential hairpin-like precursors remain as plausible miRNA candidates. RNA blots confirmed miRNA expression and suggested tissue- and/or developmental-specific expression patterns. Target mRNAs of conserved miRNAs were computationally predicted among the olive cDNA collection and experimentally validated through endonucleolytic cleavage assays. Finally, we use expression data to uncover genetic components of the miR156, miR172 and miR390/TAS3-derived trans-acting small interfering RNA (tasiRNA) regulatory nodes, suggesting that these interactive networks controlling developmental transitions are fully operational in olive.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Olea/genética , Interferência de RNA , RNA de Plantas/genética , Sequência de Bases , Sequência Conservada/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Dados de Sequência Molecular , Olea/crescimento & desenvolvimento , Polimorfismo Genético , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA