Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Circ Res ; 135(1): 110-134, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38808504

RESUMO

BACKGROUND: Vein graft failure following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. Although previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on vein graft failure. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury. METHODS: Employing a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing and spatial transcriptomics analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24 hours after carotid-carotid vein bypass implantation in a canine model (n=4). RESULTS: Spatial transcriptomic analysis of canine cephalic vein after initial conduit harvest and distention revealed significant enrichment of pathways (P<0.05) involved in the activation of endothelial cells (ECs), fibroblasts, and vascular smooth muscle cells, namely pathways responsible for cellular proliferation and migration and platelet activation across the intimal and medial layers, cytokine signaling within the adventitial layer, and ECM (extracellular matrix) remodeling throughout the vein wall. Subsequent single-nuclei RNA-sequencing analysis supported these findings and further unveiled distinct EC and fibroblast subpopulations with significant upregulation (P<0.05) of markers related to endothelial injury response and cellular activation of ECs, fibroblasts, and vascular smooth muscle cells. Similarly, in vein grafts obtained 24 hours after arterial bypass, there was an increase in myeloid cell, protomyofibroblast, injury response EC, and mesenchymal-transitioning EC subpopulations with a concomitant decrease in homeostatic ECs and fibroblasts. Among these markers were genes previously implicated in vein graft injury, including VCAN, FBN1, and VEGFC, in addition to novel genes of interest, such as GLIS3 and EPHA3. These genes were further noted to be driving the expression of genes implicated in vascular remodeling and graft failure, such as IL-6, TGFBR1, SMAD4, and ADAMTS9. By integrating the spatial transcriptomics and single-nuclei RNA-sequencing data sets, we highlighted the spatial architecture of the vein graft following distension, wherein activated and mesenchymal-transitioning ECs, myeloid cells, and fibroblasts were notably enriched in the intima and media of distended veins. Finally, intercellular communication network analysis unveiled the critical roles of activated ECs, mesenchymal-transitioning ECs, protomyofibroblasts, and vascular smooth muscle cells in upregulating signaling pathways associated with cellular proliferation (MDK [midkine], PDGF [platelet-derived growth factor], VEGF [vascular endothelial growth factor]), transdifferentiation (Notch), migration (ephrin, semaphorin), ECM remodeling (collagen, laminin, fibronectin), and inflammation (thrombospondin), following distension. CONCLUSIONS: Vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies. This work highlights the first applications of single-nuclei and spatial transcriptomic analyses to investigate venous pathologies, underscoring the utility of these methodologies and providing a foundation for future investigations.


Assuntos
Análise de Célula Única , Transcriptoma , Animais , Cães , Masculino , Coleta de Tecidos e Órgãos/efeitos adversos , Coleta de Tecidos e Órgãos/métodos , Feminino , Transdução de Sinais , Perfilação da Expressão Gênica/métodos
2.
FASEB J ; 38(1): e23321, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031974

RESUMO

Bypass graft failure occurs in 20%-50% of coronary and lower extremity bypasses within the first-year due to intimal hyperplasia (IH). TSP-2 is a key regulatory protein that has been implicated in the development of IH following vessel injury. In this study, we developed a biodegradable CLICK-chemistry gelatin-based hydrogel to achieve sustained perivascular delivery of TSP-2 siRNA to rat carotid arteries following endothelial denudation injury. At 21 days, perivascular application of TSP-2 siRNA embedded hydrogels significantly downregulated TSP-2 gene expression, cellular proliferation, as well as other associated mediators of IH including MMP-9 and VEGF-R2, ultimately resulting in a significant decrease in IH. Our data illustrates the ability of perivascular CLICK-gelatin delivery of TSP-2 siRNA to mitigate IH following arterial injury.


Assuntos
Gelatina , Lesões do Sistema Vascular , Ratos , Animais , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Hiperplasia , Trombospondinas/genética , Proliferação de Células
3.
FASEB J ; 31(1): 109-119, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27671229

RESUMO

In an effort to inhibit the response to vascular injury that leads to intimal hyperplasia, this study investigated the in vivo efficacy of intraluminal delivery of thrombospondin-2 (TSP-2) small interfering RNA (siRNA). Common carotid artery (CCA) balloon angioplasty injury was performed in rats. Immediately after denudation, CCA was transfected intraluminally (15 min) with one of the following: polyethylenimine (PEI)+TSP-2 siRNA, saline, PEI only, or PEI+control siRNA. CCA was analyzed at 24 h or 21 d by using quantitative real-time PCR and immunohistochemistry. TSP-2 gene and protein expression were significantly up-regulated after endothelial denudation at 24 h and 21 d compared with contralateral untreated, nondenuded CCA. Treatment with PEI+TSP-2 siRNA significantly suppressed TSP-2 gene expression (3.1-fold) at 24 h and TSP-2 protein expression, cell proliferation, and collagen deposition up to 21 d. These changes could be attributed to changes in TGF-ß and matrix metalloproteinase-9, the downstream effectors of TSP-2. TSP-2 knockdown induced anti-inflammatory M2 macrophage polarization at 21 d; however, it did not significantly affect intima/media ratios. In summary, these data demonstrate effective siRNA transfection of the injured arterial wall and provide a clinically effective and translationally applicable therapeutic strategy that involves nonviral siRNA delivery to ameliorate the response to vascular injury.-Bodewes, T. C. F., Johnson, J. M., Auster, M., Huynh, C., Muralidharan, S., Contreras, M., LoGerfo, F. W., Pradhan-Nabzdyk, L. Intraluminal delivery of thrombospondin-2 small interfering RNA inhibits the vascular response to injury in a rat carotid balloon angioplasty model.


Assuntos
Angioplastia com Balão , Lesões das Artérias Carótidas/metabolismo , Regulação da Expressão Gênica/fisiologia , RNA Interferente Pequeno/administração & dosagem , Trombospondinas/metabolismo , Animais , Proliferação de Células , Colágeno , Macrófagos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Ratos , Trombospondinas/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
4.
J Transl Med ; 15(1): 164, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754174

RESUMO

BACKGROUND: Cardiovascular disease remains a major health care challenge. The knowledge about the underlying mechanisms of the respective vascular disease etiologies has greatly expanded over the last decades. This includes the contribution of microRNAs, endogenous non-coding RNA molecules, known to vastly influence gene expression. In addition, short interference RNA has been established as a mechanism to temporarily affect gene expression. This review discusses challenges relating to the design of a RNA interference therapy strategy for the modulation of vascular disease. Despite advances in medical and surgical therapies, atherosclerosis (ATH), aortic aneurysms (AA) are still associated with high morbidity and mortality. In addition, intimal hyperplasia (IH) remains a leading cause of late vein and prosthetic bypass graft failure. Pathomechanisms of all three entities include activation of endothelial cells (EC) and dedifferentiation of vascular smooth muscle cells (VSMC). RNA interference represents a promising technology that may be utilized to silence genes contributing to ATH, AA or IH. Successful RNAi delivery to the vessel wall faces multiple obstacles. These include the challenge of cell specific, targeted delivery of RNAi, anatomical barriers such as basal membrane, elastic laminae in arterial walls, multiple layers of VSMC, as well as adventitial tissues. Another major decision point is the route of delivery and potential methods of transfection. A plethora of transfection reagents and adjuncts have been described with varying efficacies and side effects. Timing and duration of RNAi therapy as well as target gene choice are further relevant aspects that need to be addressed in a temporo-spatial fashion. CONCLUSIONS: While multiple preclinical studies reported encouraging results of RNAi delivery to the vascular wall, it remains to be seen if a single target can be sufficient to the achieve clinically desirable changes in the injured vascular wall in humans. It might be necessary to achieve simultaneous and/or sequential silencing of multiple, synergistically acting target genes. Some advances in cell specific RNAi delivery have been made, but a reliable vascular cell specific transfection strategy is still missing. Also, off-target effects of RNAi and unwanted effects of transfection agents on gene expression are challenges to be addressed. Close collaborative efforts between clinicians, geneticists, biologists, and chemical and medical engineers will be needed to provide tailored therapeutics for the various types of vascular diseases.


Assuntos
Artérias/anatomia & histologia , Artérias/fisiologia , Terapêutica com RNAi , Veias/anatomia & histologia , Veias/fisiologia , Animais , Humanos , MicroRNAs/metabolismo , RNA Interferente Pequeno/administração & dosagem , Pesquisa Translacional Biomédica
5.
J Vasc Surg ; 66(4): 1117-1122, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28502548

RESUMO

BACKGROUND: Life expectancy is short for patients with critical limb ischemia (CLI), many of whom may fear amputation more than death. In light of the reduced life expectancy of these patients, the traditional 5-year freedom from amputation (FFA) statistic may not accurately address their concern. We developed a more relevant patient-centered calculation of major amputation risk during a patient's remaining lifetime to better answer the question, Will I ever lose my leg? METHODS: We identified all limbs undergoing first-time intervention for CLI in a large institutional database from 2005 to 2013. We calculated the traditional metrics of amputation-free survival (AFS, for which failure is death or amputation) and FFA (for which failure is amputation but deaths are censored and removed from further analysis). In addition, we propose a new term, lifelong limb preservation (LLP). LLP defines amputation as failure, but deaths are not censored and therefore reflect that LLP has been achieved. All deaths before 30 days were considered a failure in all three metrics, reflecting the risk of surgery. RESULTS: There were 1006 limbs identified as having first-time intervention for CLI (22% rest pain, 45% ulcer, 27% gangrene; 46% treated by angioplasty with or without stenting, 54% bypass). Using life-table analysis, 7-year AFS was 14% (561 events), FFA was 78% (123 events), and LLP was 86% (123 events). LLP was similar between patients undergoing angioplasty with or without stenting and bypass (7-year rates, 86% and 85%, respectively). For patients undergoing intervention for rest pain, 7-year rates were 14% for AFS, 84% for FFA, and 92% for LLP. For those undergoing treatment for ulcer, 7-year rates were 14% for AFS, 77% for FFA, and 86% for LLP. Finally, in those with gangrene, rates were 10% for AFS, 67% for FFA, and 79% for LLP. Using LLP, patients presenting with an ulcer can be told that although we cannot guarantee how long they will live, with revascularization there is approximately an 86% chance they will not lose the leg. CONCLUSIONS: These results show that the durability of our limb preservation efforts often exceeds the life expectancy of our patients. Using LLP as an outcomes assessment provides a more accurate and patient-centered answer to the question, If I have this procedure, will I ever lose my leg?


Assuntos
Angioplastia , Técnicas de Apoio para a Decisão , Isquemia/terapia , Salvamento de Membro , Extremidade Inferior/irrigação sanguínea , Doença Arterial Periférica/terapia , Idoso , Amputação Cirúrgica , Angioplastia/efeitos adversos , Angioplastia/instrumentação , Angioplastia/mortalidade , Comunicação , Estado Terminal , Intervalo Livre de Doença , Feminino , Humanos , Isquemia/diagnóstico , Isquemia/mortalidade , Isquemia/psicologia , Estimativa de Kaplan-Meier , Expectativa de Vida , Tábuas de Vida , Masculino , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/mortalidade , Doença Arterial Periférica/psicologia , Relações Médico-Paciente , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Stents , Fatores de Tempo , Resultado do Tratamento
6.
BMC Genomics ; 17: 20, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728506

RESUMO

BACKGROUND: RNA interference (RNAi) is a powerful platform utilized to target transcription of specific genes and downregulate the protein product. To achieve effective silencing, RNAi is usually applied to cells or tissue with a transfection reagent to enhance entry into cells. A commonly used control is the same transfection reagent plus a "noncoding RNAi". However, this does not control for the genomic response to the transfection reagent alone or in combination with the noncoding RNAi. These control effects while not directly targeting the gene in question may influence expression of other genes that in turn alter expression of the target. The current study was prompted by our work focused on prevention of vascular bypass graft failure and our experience with gene silencing in human aortic smooth muscle cells (HAoSMCs) where we suspected that off target effects through this mechanism might be substantial. We have used Next Generation Sequencing (NGS) technology and bioinformatics analysis to examine the genomic response of HAoSMCs to the transfection reagent alone (polyethyleneimine (PEI)) or in combination with commercially obtained control small interfering RNA (siRNAs) (Dharmacon and Invitrogen). RESULTS: Compared to untreated cells, global gene expression of HAoSMcs after transfection either with PEI or in combination with control siRNAs displayed significant alterations in gene transcriptome after 24 h. HAoSMCs transfected by PEI alone revealed alterations of 213 genes mainly involved in inflammatory and immune responses. HAoSMCs transfected by PEI complexed with siRNA from either Dharmacon or Invitrogen showed substantial gene variation of 113 and 85 genes respectively. Transfection of cells with only PEI or with PEI and control siRNAs resulted in identification of 20 set of overlapping altered genes. Further, systems biology analysis revealed key master regulators in cells transfected with control siRNAs including the cytokine, Interleukin (IL)-1, transcription factor GATA Binding Protein (GATA)-4 and the methylation enzyme, Enhancer of zeste homolog 2 (EZH-2) a cytokine with an apical role in initiating the inflammatory response. CONCLUSIONS: Significant off-target effects in HAoSMCs transfected with PEI alone or in combination with control siRNAs may lead to misleading conclusions concerning the effectiveness of a targeted siRNA strategy. The lack of structural information about transfection reagents and "non coding" siRNA is a hindrance in the development of siRNA based therapeutics.


Assuntos
Aorta/efeitos dos fármacos , Biologia Computacional , Regulação da Expressão Gênica/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Aorta/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Fator de Transcrição GATA4/biossíntese , Regulação da Expressão Gênica/genética , Inativação Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interleucina-1/biossíntese , Músculo Liso Vascular/metabolismo , Complexo Repressor Polycomb 2/biossíntese , Polietilenoimina/administração & dosagem , RNA Interferente Pequeno/genética , Transfecção/métodos
7.
Am J Pathol ; 185(6): 1638-48, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25871534

RESUMO

Diabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds. We also studied the impact of deficiency in SP or its receptor, neurokinin-1 receptor, on wound healing in mouse models. SP treatment improved wound healing in mice and rabbits, whereas the absence of SP or its receptor impaired wound progression in mice. Moreover, SP bioavailability in diabetic skin was reduced as SP gene expression was decreased, whereas the gene expression and protein levels of the enzyme that degrades SP, neutral endopeptidase, were increased. Diabetes and SP deficiency were associated with absence of an acute inflammatory response important for wound healing progression and instead revealed a persistent inflammation throughout the healing process. SP treatment induced an acute inflammatory response, which enabled the progression to the proliferative phase and modulated macrophage activation toward the M2 phenotype that promotes wound healing. In conclusion, SP treatment reverses the chronic proinflammatory state in diabetic skin and promotes healing of diabetic wounds.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Substância P/metabolismo , Substância P/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/patologia , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Coelhos , Receptores da Neurocinina-1/genética , Receptores da Neurocinina-1/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Substância P/genética , Cicatrização/fisiologia
8.
bioRxiv ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961724

RESUMO

Background: Vein graft failure (VGF) following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. While previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on VGF. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury. Methods: Employing a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing (snRNA-seq) and spatial transcriptomics (ST) analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24 hours after carotid-cartoid vein bypass implantation in a canine model (n=4). Results: Spatial transcriptomic analysis of canine cephalic vein after initial conduit harvest and distention revealed significant enrichment of pathways (P < 0.05) involved in the activation of endothelial cells (ECs), fibroblasts (FBs), and vascular smooth muscle cells (VSMCs), namely pathways responsible for cellular proliferation and migration and platelet activation across the intimal and medial layers, cytokine signaling within the adventitial layer, and extracellular matrix (ECM) remodeling throughout the vein wall. Subsequent snRNA-seq analysis supported these findings and further unveiled distinct EC and FB subpopulations with significant upregulation (P < 0.00001) of markers related to endothelial injury response and cellular activation of ECs, FBs, and VSMCs. Similarly, in vein grafts obtained 24 hours after arterial bypass, there was an increase in myeloid cell, protomyofibroblast, injury-response EC, and mesenchymal-transitioning EC subpopulations with a concomitant decrease in homeostatic ECs and fibroblasts. Among these markers were genes previously implicated in vein graft injury, including VCAN (versican), FBN1 (fibrillin-1), and VEGFC (vascular endothelial growth factor C), in addition to novel genes of interest such as GLIS3 (GLIS family zinc finger 3) and EPHA3 (ephrin-A3). These genes were further noted to be driving the expression of genes implicated in vascular remodeling and graft failure, such as IL-6, TGFBR1, SMAD4, and ADAMTS9. By integrating the ST and snRNA-seq datasets, we highlighted the spatial architecture of the vein graft following distension, wherein activated and mesenchymal-transitioning ECs, myeloid cells, and FBs were notably enriched in the intima and media of distended veins. Lastly, intercellular communication network analysis unveiled the critical roles of activated ECs, mesenchymal transitioning ECs, protomyofibroblasts, and VSMCs in upregulating signaling pathways associated with cellular proliferation (MDK, PDGF, VEGF), transdifferentiation (Notch), migration (ephrin, semaphorin), ECM remodeling (collagen, laminin, fibronectin), and inflammation (thrombospondin), following distension. Conclusions: Vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies. This work highlights the first applications of single-nuclei and spatial transcriptomic analyses to investigate venous pathologies, underscoring the utility of these methodologies and providing a foundation for future investigations.

9.
J Vasc Surg ; 67(5): 1636-1637, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29685258
10.
J Vasc Surg ; 58(3): 766-75.e12, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23755976

RESUMO

OBJECTIVE: The present study is designed to understand the contribution of peripheral vascular disease and peripheral neuropathy to the wound-healing impairment associated with diabetes. Using a rabbit model of diabetic neuroischemic wound healing, we investigated rate of healing, leukocyte infiltration, and expression of cytokines, interleukin-8 and interleukin-6, and neuropeptides, substance P, and neuropeptide Y. METHODS: Diabetes was induced in New Zealand White rabbits by administering alloxan while control rabbits received saline. Ten days later, animals in both groups underwent surgery. One ear served as a sham, and the other was made ischemic (ligation of central+rostral arteries) or neuroischemic (ischemia+ resection of central+rostral nerves). Four 6-mm punch biopsy wounds were created in both ears and wound healing was followed for 10 days using computerized planimetry. RESULTS: Nondiabetic sham and ischemic wounds healed significantly more rapidly than diabetic sham and ischemic wounds. Healing was slowest in neuroischemic wounds, irrespective of diabetic status. A high M1/M2 macrophage ratio and a high proinflammatory cytokine expression, both indicators of chronic proinflammatory state, and low neuropeptide expression were seen in preinjury diabetic skin. Postinjury, in diabetic wounds, the M1/M2 ratio remained high, the reactive increase in cytokine expression was low, and neuropeptide expression was further decreased in neuroischemic wounds. CONCLUSIONS: This rabbit model illustrates how a combination of a high M1/M2 ratio, a failure to mount postinjury cytokine response as well as a diminished neuropeptide expression, contribute to wound-healing impairment in diabetes. The addition of neuropathy to ischemia leads to equivalently severe impaired wound-healing irrespective of diabetes status, suggesting that in the presence of ischemia, loss of neuropeptide function contributes to the impaired healing associated with diabetes.


Assuntos
Citocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Angiopatias Diabéticas/etiologia , Neuropatias Diabéticas/etiologia , Mediadores da Inflamação/metabolismo , Isquemia/etiologia , Neuropeptídeos/metabolismo , Úlcera Cutânea/etiologia , Pele , Cicatrização , Animais , Citocinas/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/imunologia , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/imunologia , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/patologia , Regulação para Baixo , Isquemia/genética , Isquemia/imunologia , Isquemia/metabolismo , Isquemia/patologia , Macrófagos/imunologia , Neuropeptídeos/genética , Coelhos , Pele/imunologia , Pele/metabolismo , Pele/patologia , Úlcera Cutânea/genética , Úlcera Cutânea/imunologia , Úlcera Cutânea/metabolismo , Úlcera Cutânea/patologia , Fatores de Tempo , Regulação para Cima
11.
Biochem Biophys Res Commun ; 425(2): 261-5, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22842581

RESUMO

BACKGROUND: RNAi technology is a promising tool for gene therapy of vascular disease. However, the biological heterogeneity between endothelial (EC) and vascular smooth muscle cells (SMC) and within different vascular beds make them differentially susceptible to siRNA. This is further complicated by the task of choosing the right transfection reagent that leads to consistent gene silencing across all cell types with minimal toxicity. The goal of this study was to investigate the intrinsic RNAi susceptibility of primary human aortic and coronary artery endothelial and vascular smooth muscle cells (AoEC, CoEC, AoSMC and CoSMC) using adherent cell cytometry. METHODS: Cells were seeded at a density of 5000cells/well of a 96well plate. Twenty four hours later cells were transfected with either non-targeting unlabeled control siRNA (50nM), or non-targeting red fluorescence labeled siRNA (siGLO Red, 5 or 50nM) using no transfection reagent, HiPerFect or Lipofectamine RNAiMAX. Hoechst nuclei stain was used to label cells for counting. For data analysis an adherent cell cytometer, Celigo was used. RESULTS: Red fluorescence counts were normalized to the cell count. EC displayed a higher susceptibility towards siRNA delivery than SMC from the corresponding artery. CoSMC were more susceptible than AoSMC. In all cell types RNAiMAX was more potent compared to HiPerFect or no transfection reagent. However, after 24h, RNAiMAX led to a significant cell loss in both AoEC and CoEC. None of the other transfection conditions led to a significant cell loss. CONCLUSION: This study confirms our prior observation that EC are more susceptible to siRNA than SMC based on intracellular siRNA delivery. RNAiMax treatment led to significant cell loss in AoEC and CoEC, but not in the SMC populations. Additionally, this study is the first to demonstrate that coronary SMC are more susceptible to siRNA than aortic SMC.


Assuntos
Aorta/citologia , Vasos Coronários/citologia , Endotélio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transfecção , Adesão Celular , Contagem de Células , Citometria de Fluxo , Fluorescência , Humanos , Músculo Liso Vascular/citologia , RNA Interferente Pequeno/genética
12.
Expert Rev Mol Med ; 13: e26, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21831336

RESUMO

Cardiovascular autonomic neuropathy (CAN), in which patients present with damage of autonomic nerve fibres, is one of the most common complications of diabetes. CAN leads to abnormalities in heart rate and vascular dynamics, which are features of diabetic heart failure. Dysregulated neurohormonal activation, an outcome of diabetic neuropathy, has a significant pathophysiological role in diabetes-associated cardiovascular disease. Key players in neurohormonal activation include cardioprotective neuropeptides and their receptors, such as substance P (SP), neuropeptide Y (NPY), calcitonin-gene-related peptide (CGRP), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP). These neuropeptides are released from the peripheral or autonomic nervous system and have vasoactive properties. They are further implicated in cardiomyocyte hypertrophy, calcium homeostasis, ischaemia-induced angiogenesis, protein kinase C signalling and the renin-angiotensin-aldosterone system. Therefore, dysregulation of the expression of neuropeptides or activation of the neuropeptide signalling pathways can negatively affect cardiac homeostasis. Targeting neuropeptides and their signalling pathways might thus serve as new therapeutic interventions in the treatment of heart failure associated with diabetes. This review discusses how neuropeptide dysregulation in diabetes might affect cardiac functions that contribute to the development of heart failure.


Assuntos
Neuropatias Diabéticas/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Neuropeptídeos/fisiologia , Animais , Humanos
13.
J Transl Med ; 9: 48, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21518450

RESUMO

BACKGROUND: siRNA technology is a promising tool for gene therapy of vascular disease. Due to the multitude of reagents and cell types, RNAi experiment optimization can be time-consuming. In this study adherent cell cytometry was used to rapidly optimize siRNA transfection in human aortic vascular smooth muscle cells (AoSMC). METHODS: AoSMC were seeded at a density of 3000-8000 cells/well of a 96 well plate. 24 hours later AoSMC were transfected with either non-targeting unlabeled siRNA (50 nM), or non-targeting labeled siRNA, siGLO Red (5 or 50 nM) using no transfection reagent, HiPerfect or Lipofectamine RNAiMax. For counting cells, Hoechst nuclei stain or Cell Tracker green were used. For data analysis an adherent cell cytometer, Celigo® was used. Data was normalized to the transfection reagent alone group and expressed as red pixel count/cell. RESULTS: After 24 hours, none of the transfection conditions led to cell loss. Red fluorescence counts were normalized to the AoSMC count. RNAiMax was more potent compared to HiPerfect or no transfection reagent at 5 nM siGLO Red (4.12 +/-1.04 vs. 0.70 +/-0.26 vs. 0.15 +/-0.13 red pixel/cell) and 50 nM siGLO Red (6.49 +/-1.81 vs. 2.52 +/-0.67 vs. 0.34 +/-0.19). Fluorescence expression results supported gene knockdown achieved by using MARCKS targeting siRNA in AoSMCs. CONCLUSION: This study underscores that RNAi delivery depends heavily on the choice of delivery method. Adherent cell cytometry can be used as a high throughput-screening tool for the optimization of RNAi assays. This technology can accelerate in vitro cell assays and thus save costs.


Assuntos
Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Interferência de RNA , Aorta/citologia , Adesão Celular , Contagem de Células , Morte Celular , Células Cultivadas , Corantes Fluorescentes/metabolismo , Humanos , Indicadores e Reagentes , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Substrato Quinase C Rico em Alanina Miristoilada , RNA Interferente Pequeno/metabolismo , Transfecção
14.
J Vasc Surg ; 53(6): 1654-60.e2, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21609799

RESUMO

BACKGROUND: Impaired wound healing is a major complication associated with diabetes, involving a dysregulation and impairments in the inflammatory and angiogenic phases of wound healing. Here, we examine the effects of the neuropeptides substance P (SP) and neuropeptide Y (NPY) on dermal microvascular endothelial cell (DMVEC) angiogenesis and interleukin-8 (IL-8) expression, a known effector of the neuropeptide pathways in normal and hyperglycemic conditions in vitro. METHODS: DMVECs are treated with one of four glucose concentrations: 1) 5 mM glucose; 2) 10 mM glucose; 3) 30 mM glucose; or 4) 30 mM mannitol and cotreated with 100 nM NPY, 100 nM SP, or 10 ng/mL IL-8. Angiogenesis is assessed with proliferation and tube formation assays. IL-8 mRNA and protein expression are evaluated at days 1 and 7. RESULTS: As compared with noromoglycemia (5 mM glucose), hyperglycemia (30 mM glucose) decreases DMVEC proliferation and tube formation by 39% and 42%, respectively. SP cotreatment restores DMVEC proliferation (211%) and tube formation (152%), and decreases IL-8 expression (34%) in DMVECs exposed to hyperglycemic conditions. These effects are not observed with NPY. However, IL-8 treatment by itself does not affect proliferation or tube formation, suggesting that the effect of SP on DMVEC angiogenesis is unlikely through changes in IL-8 expression. CONCLUSION: Hyperglycemic conditions impair DMVEC proliferation and tube formation. SP mitigates the effect of hyperglycemia on DMVECs by increasing DMVEC proliferation and tube formation. These findings are not likely to be related to a dysregulation of IL-8 due to the lack of effects of hyperglycemia on IL-8 expression and the lack of effect of IL-8 on DMVEC proliferation and tube formation. The effect of SP on DMVECs makes SP a promising potential target for therapy in impaired wound healing in diabetes, but the exact mechanism remains unknown.


Assuntos
Endotélio Vascular/metabolismo , Hiperglicemia/metabolismo , Interleucina-8/biossíntese , Neovascularização Fisiológica/fisiologia , Neuropeptídeos/metabolismo , Cicatrização/fisiologia , Proliferação de Células , Células Cultivadas , Derme/irrigação sanguínea , Derme/metabolismo , Células Endoteliais/fisiologia , Endotélio Vascular/fisiologia , Endotélio Vascular/fisiopatologia , Humanos , Hiperglicemia/fisiopatologia , Microvasos/metabolismo , Neuropeptídeo Y/metabolismo , Substância P/metabolismo
15.
J Surg Res ; 167(2): 336-42, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20070982

RESUMO

The interaction between neuropeptides and cytokines and its role in cutaneous wound healing is becoming evident. The goal of the present study is to investigate the impact of diabetes on peripheral cytokine and neuropeptide expression and its role in diabetic wound healing. To achieve this goal, the effect of diabetes on wound healing, along with the role of inflammatory cytokines such as interleukin-6 (IL-6) and interleukin-8 (IL-8) secreted in the wound microenvironment, and neuropeptides such as substance P (SP) and neuropeptide Y (NPY), secreted from peripheral nerves is monitored in non-diabetic and diabetic rabbits. Rabbits in the diabetic group received alloxan monohydrate (100mg/kg i.v.). Ten days after diabetic induction, four full thickness circular wounds were created in both ears using a 6mm punch biopsy. Wound healing was monitored over 10 d and gene expression of cytokines and neuropeptides was assessed in the wounds. Compared with the non-diabetic rabbits, wounds of diabetic rabbits heal significantly slower. Diabetic rabbits show significantly increased baseline gene expression of IL-6 and IL-8, their receptors, CXCR1, CXCR2, GP-130, and a decrease of prepro tachykinin-A (PP-TA), the precursor of SP, whereas the expression of prepro-NPY (PP-NPY), the precursor of NPY is not different. Similarly, baseline protein expression of CXCR1 is higher in diabetic rabbit skin. Post-injury, the increase over baseline gene expression of IL-6, IL-8, CXCR1, CXCR2, and GP-130 is significantly less in diabetic wounds compared with non-diabetic wounds. Although there is no difference in PP-TA gene expression between non-diabetic and diabetic rabbits post-injury, the gene expression of PP-NPY is reduced in diabetic rabbits. In conclusion, diabetes causes dysregulation in the neuropeptide expression in the skin along with a suppressed focused inflammatory response to injury. This suggests that the chronic inflammation in the skin of diabetic rabbits inhibits the acute inflammation much needed for wound healing.


Assuntos
Citocinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Inflamação/metabolismo , Neuropeptídeos/metabolismo , Cicatrização/fisiologia , Aloxano , Animais , Modelos Animais de Doenças , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Neuropeptídeo Y/metabolismo , Coelhos , Substância P/metabolismo
16.
J Vasc Surg ; 52(6): 1608-15, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20801607

RESUMO

BACKGROUND: Endothelial gene silencing via small interfering RNA (siRNA) transfection represents a promising strategy for the control of vascular disease. Here, we demonstrate endothelial gene silencing in human saphenous vein using three rapid siRNA transfection techniques amenable for use in the operating room. METHODS: Control siRNA, Cy5 siRNA, or siRNA targeting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or endothelial specific nitric oxide synthase (eNOS) were applied to surplus human saphenous vein for 10 minutes by (i) soaking, (ii) applying 300 mm Hg hyperbaric pressure, or (iii) 120 mm Hg luminal distending pressure. Transfected vein segments were maintained in organ culture. siRNA delivery and gene silencing were assessed by tissue layer using confocal microscopy and immunohistochemistry. RESULTS: Distending pressure transfection yielded the highest levels of endothelial siRNA delivery (22% pixels fluorescing) and gene silencing (60% GAPDH knockdown, 55% eNOS knockdown) as compared with hyperbaric (12% pixels fluorescing, 36% GAPDH knockdown, 30% eNOS knockdown) or non-pressurized transfections (10% pixels fluorescing, 30% GAPDH knockdown, 25% eNOS knockdown). Cumulative endothelial siRNA delivery (16% pixels fluorescing) and gene silencing (46% GAPDH knockdown) exceeded levels achieved in the media/adventitia (8% pixels fluorescing, 24% GAPDH knockdown) across all transfection methods. CONCLUSION: Endothelial gene silencing is possible within the time frame and conditions of surgical application without the use of transfection reagents. The high sensitivity of endothelial cells to siRNA transfection marks the endothelium as a promising target of gene therapy in vascular disease.


Assuntos
Endotélio Vascular/citologia , Inativação Gênica , RNA Interferente Pequeno/genética , Transfecção , Pressão do Ar , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/metabolismo , Humanos , Interferência de RNA , Veia Safena/citologia , Técnicas de Cultura de Tecidos
17.
FASEB J ; 23(2): 557-64, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18940893

RESUMO

Intimal hyperplasia (IH) limits the patency of all cardiovascular vein bypass grafts. We previously found the myristoylated alanine-rich C kinase substrate (MARCKS), a key protein kinase C (PKC) substrate, to be up-regulated in canine models of IH. Here, we further characterize the role of MARCKS in IH and examine the phenotypic consequences of MARCKS silencing by small interfering RNA (siRNA) transfection in human vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) in vitro and use a rapid 10-min nonviral siRNA transfection technique to determine the effects of MARCKS silencing in human saphenous vein cultured ex vivo. We demonstrate MARCKS silencing attenuates VSMC migration and arrests VSMC proliferation in part through the up-regulation of the cyclin-dependent kinase inhibitor p27(kip1). Conversely, MARCKS silencing had little or no effect on EC migration or proliferation. These phenotypic changes culminated in reduced neointimal formation in cultured human saphenous vein. These data identify MARCKS as a pathogenic contributor to IH and indicate therapeutic MARCKS silencing could selectively suppress the "atherogenic," proliferative phenotype of VSMCs without collateral harm to the endothelium. This approach could be readily translated to the clinic to silence MARCKS in vein bypass grafts prior to implantation.


Assuntos
Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , RNA Interferente Pequeno/genética , Veia Safena/metabolismo , Veia Safena/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células Endoteliais/citologia , Humanos , Hiperplasia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Substrato Quinase C Rico em Alanina Miristoilada , Fenótipo , Fatores de Tempo , Regulação para Cima
18.
Expert Rev Mol Med ; 11: e2, 2009 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-19138453

RESUMO

Abnormal wound healing is a major complication of both type 1 and type 2 diabetes, with nonhealing foot ulcerations leading in the worst cases to lower-limb amputation. Wound healing requires the integration of complex cellular and molecular events in successive phases of inflammation, cell proliferation, cell migration, angiogenesis and re-epithelialisation. A link between wound healing and the nervous system is clinically apparent as peripheral neuropathy is reported in 30-50% of diabetic patients and is the most common and sensitive predictor of foot ulceration. Indeed, a bidirectional connection between the nervous and the immune systems and its role in wound repair has emerged as one of the focal features of the wound-healing dogma. This review provides a broad overview of the mediators of this connection, which include neuropeptides and cytokines released from nerve fibres, immune cells and cutaneous cells. In-depth understanding of the signalling pathways in the neuroimmune axis in diabetic wound healing is vital to the development of successful wound-healing therapies.


Assuntos
Diabetes Mellitus/patologia , Inflamação/complicações , Inflamação/metabolismo , Neuropeptídeos/metabolismo , Cicatrização , Animais , Neuropatias Diabéticas/complicações , Humanos , Mediadores da Inflamação/metabolismo
20.
J Am Coll Surg ; 204(3): 399-408, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17324773

RESUMO

BACKGROUND: Gene silencing achieved through small interfering RNA (siRNA) transfection represents a promising approach to vascular gene therapy. Here we characterize the behavior of RNA interference (RNAi) in vascular biology by comparing the RNAi response to single- and multigene siRNA transfections in vitro in human vascular cells. STUDY DESIGN: The strength and specificity of multigene silencing in cultured human coronary artery smooth muscle and human coronary artery endothelial cells (HCASMC/HCAEC) were assessed by quantitative reverse transcription-polymerase chain reaction (QRT-PCR) and Western blot after transfection singly or simultaneously with siRNAs targeting glyceraldehyde-3-phosphate dehydrogenase, the myristoylated alanine-rich C kinase substrate, and cadherin 11. RNAi response to low-dose (0.25 to 10 nM) siRNA transfection was characterized between the two cell types by QRT-PCR and fluorescence-activated cell sorter analysis. RESULTS: Powerful and specific silencing of all targets was observed in both cell types after multigene siRNA transfections, but with a reduction in effect compared with single-gene siRNA transfections. Multigene messenger RNA (mRNA) reductions in HCAECs exceeded those achieved in HCASMCs, and superior mRNA silencing and siRNA delivery were observed in HCAECs after low-dose siRNA transfections. CONCLUSIONS: Multigene silencing by siRNA stands as a promising nonviral approach for manipulating gene expression in human vascular cells. Under our in vitro conditions, endothelial cells were more susceptible to siRNA transfection and gene silencing than vascular smooth muscle cells. RNAi technology could potentially find use in the development of siRNA cocktails for application to vein bypass grafts or for modulating endothelial cell function in other forms of vascular disease.


Assuntos
Endotélio Vascular/citologia , Inativação Gênica , Músculo Liso Vascular/citologia , RNA Interferente Pequeno/genética , Western Blotting , Células Cultivadas , Vasos Coronários/citologia , Terapia Genética/métodos , Humanos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA