RESUMO
Ene-amides have been explored as ligands and substrates for oxidative coupling. Treatment of CrCl2, Cl2Fe(PMe3)2, and Cl2Copy4 with 2 equiv of {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}Li afforded pseudosquare planar {η(3)-C,C,N-(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}2Cr (1-Cr, 78%), trigonal {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}2Fe(PMe3) (2-Fe, 80%), and tetrahedral {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}2Co(py)2 (3-Co, 91%) in very good yields. The addition of CrCl3 to 1-Cr, and FeCl3 to 2-Fe, afforded oxidatively triggered C-C bond formation as rac-2,2'-di(2,6-(i)Pr2C6H3Nâ)2dicyclohexane (EA2) was produced in modest yields. Various lithium ene-amides were similarly coupled, and the mechanism was assessed via stoichiometric reactions. Some ferrous compounds (e.g., 2-Fe, FeCl2) were shown to catalyze C-arylation of {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}Li with PhBr, but the reaction was variable. Structural characterizations of 1-Cr, 2-Fe, and 3-Co are reported.
RESUMO
Independent control of halide substitution at six of the seven naphthalene positions of 2-arylnaphthalenes is achieved through the regioselective benzannulation of chloro-, bromo-, and iodoalkynes. The modularity of this approach is demonstrated through the preparation of 44 polyheterohalogenated naphthalene products, most of which are difficult to access through known naphthalene syntheses. The outstanding regioselectivity of the reaction is both predictable and proven unambiguously by single-crystal X-ray diffraction for many examples. This synthetic method enables the rapid preparation of complex aromatic systems poised for further derivatization using established cross-coupling methods. The power and versatility of this approach makes substituted naphthalenes highly attractive building blocks for new organic materials and diversity-oriented synthesis.
RESUMO
The use of organic molecules represents a very attractive and promising alternative for electrical energy storage applications. Quinones, in general, and anthraquinones, in particular, are especially attractive due to their ability to reversibly exchange multiple electrons per formula unit. When used as the active electrode material in a real lithium-ion battery (LIB), crystalline anthraquinone powders reversibly change crystal packing as a function of state-of-charge (redox state), with well-defined voltage plateaus appearing concomitantly with new phases. Operando powder X-ray diffraction (XRD) is a powerful method for screening the structural stability of organic cathode candidates and for understanding electrochemically-induced structural transformations within organic molecular crystals. Herein we explore the electrochemical lithiation-induced polymorphism of anthraquinone (AQ) and three related derivatives. We believe that this analysis can serve as a model for studying organic charge storage within crystalline small-molecule candidates.
RESUMO
The impact of redox non-innocence (RNI) on chemical reactivity is a forefront theme in coordination chemistry. A diamide diimine ligand, [{-CH=N(1,2-C6H4)NH(2,6-iPr2C6H3)}2](n) (n = 0 to -4), (dadi)(n), chelates Cr and Fe to give [(dadi)M] ([1Cr(thf)] and [1Fe]). Calculations show [1Cr(thf)] (and [1Cr]) to have a d(4) Cr configuration antiferromagnetically coupled to (dadi)(2-)*, and [1Fe] to be S = 2. Treatment with RN3 provides products where RN is formally inserted into the C-C bond of the diimine or into a C-H bond of the diimine. Calculations on the process support a mechanism in which a transient imide (imidyl) aziridinates the diimine, which subsequently ring opens.
RESUMO
While traditional polymerization of linear α-olefins (LAOs) typically provides amorphous, low T(g) polymers, chain-straightening polymerization represents a route to semicrystalline materials. A series of α-diimine nickel catalysts were tested for the polymerization of various LAOs. Although known systems yielded amorphous or low-melting polymers, the "sandwich" α-diimines 3-6 yielded semicrystalline "polyethylene" comprised primarily of unbranched repeat units via a combination of uncommon regioselective 2,1-insertion and precision chain-walking events.
Assuntos
Alcenos/química , Alcenos/síntese química , Iminas/química , Níquel/química , Compostos Organometálicos/química , Catálise , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , PolimerizaçãoRESUMO
Nacnac-based tridentate ligands containing a pyridyl-methyl and a 2,6-dialkyl-phenylamine (i.e., (2,6-R2-C6H3NâC(Me)CHâC(Me)NH(CH2py); R = Et, {Et(nn)PM}H; R = (i)Pr, {(i)Pr(nn)PM}H) were synthesized by condensation routes. Treatment of M{N(TMS)2}THFn (M = Cr, n = 2; M = Fe, Co, n = 1; TMS = trimethylsilane; THF = tetrahydrofuran) with {(i)Pr(nn)PM}H) afforded {(i)Pr(nn)PM}MN(TMS)2 (1-M(iPr); M = Cr, Fe); {Et(nn)PM}MN(TMS)2 (1-M(Et); M = Fe, Co) was similarly obtained. {R(nn)PM}FeBr (R = (i)Pr, Et; 2-Fe(R)) were prepared from FeBr2 and {R(nn)PM}Li, and alkylated to generate {R(nn)PM}Fe(neo)Pe (R = (i)Pr, Et; 3-Fe(R)). Carbonylation of 3-Fe(R) provided {(i)Pr(nn)PM}Fe(CO(neo)Pe)CO (4-Fe(iPr)), and carbonylations of 1-Fe(R) (R = Et, (i)Pr) and 1-Cr(iPr) induced deamination to afford {R(nn)PI}Fe(CO)2 (R = (i)Pr, 5-Fe(iPr); Et, 5-Fe(Et)), where PI is pyridine-imine, and {κ(2)-N,N-pyrim-pyr}Cr(CO)4 (6-Cr(iPr)), in which the aryl-amide side of the nacnac attacked the incipient PI group. Carbon-carbon bonds were formed at the imine carbon of the {R(nn)PI} ligand. Addition of [{(i)Pr(nn)PI}(2-)](K(+)(THF)x)2 to FeCl3 generated {(i)Pr(nn)CHpy}2Fe2Cl2 (7-Fe(iPr)), and TMSN3 induced the deamination of 1-Fe(Et), but with disproportionation to provide {[Et(nn)CHpy]2}Fe (8-Fe(Et)). Ph2CN2 induced C-C bond formation with 1-Fe(iPr) via its thermal degradation to ultimately afford {(i)Pr(nn)CHpy}2(FeNâCPh2)2 (9-Fe(iPr)). The compounds were examined by X-ray crystallography (1-M(iPr), M = Cr, Fe; 1-Co(Et); 2-Fe(iPr); 4-Fe(iPr); 5-Fe(iPr); 6-Cr(iPr); 7-Fe(iPr); 8-Fe(Et); 9-Fe(iPr)), Mössbauer spectroscopy, and NMR spectroscopy. Structural parameters assessing redox noninnocence are discussed, as are structural and mechanistic consequences of the various electronic environments.
Assuntos
Quelantes/química , Cromo/química , Ferro/química , Piridinas/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Espectroscopia de MossbauerRESUMO
Nacnac-based tetradentate chelates, {nacnac-(CH2py)2}(-) ({nn(PM)2}(-)) and {nacnac-(CH2py)(CHpy)}(n) ({nn(PM)(PI)}(n)) have been investigated in iron complexes. Treatment of Fe{N(TMS)2}2(THF) with {nn(PM)2}H afforded {nn(PM)2}FeN(TMS)2 [1-N(TMS)2], which led to {nn(PM)2}FeCl (1-Cl) from HCl and to {nn(PM)2}FeN3 (1-N3) upon salt metathesis. Dehydroamination of 1-N(TMS)2 was induced by L (L = PMe3, CO) to afford {nn(PM)(PI)}Fe(PMe3)2 [2-(PMe3)2] and {nn(PM)(PI)}FeCO (3-CO). Substitution of 2-(PMe3)2 led to {nn(PM)(PI)}Fe(PMe3)CO [2-(PMe3)CO], and exposure to a vacuum provided {nn(PM)(PI)}Fe(PMe3) (3-PMe3). Metathesis routes to {nn(PM)(PI)}FeL2 (2-L2; L = PMe3, PMe2Ph) and {nn(PM)(PI)}FeL (3-L; L = PMePh2, PPh3) from [{nn(PM)(PI)}(2-)]Li2 and FeBr2(THF)2 in the presence of L proved feasible, and 1e(-) and 2e(-) oxidation of 2-(PMe3)2 afforded 2(+)-(PMe3)2 and 2(2+)-(PMe3)2 salts. Mössbauer spectroscopy, structural studies, and calculational assessments revealed the dominance of iron(II) in both high-spin (1-X) and low-spin (2-L2 and 3-L) environments, and the redox noninnocence (RNI) of {nn(PM)(PI)}(n) [2-L2, 3-L, n = 2-; 2(+)-(PMe3)2, n = 1-; 2(2+)-(PMe3)2, n = 0]. A discussion regarding the utility of RNI in chemical reactivity is proffered.
RESUMO
Treatment of cis-(Me3P)4FeMe2 with ortho-substituted diarylimines afforded 2 equiv of MeH, PMe3, and {mer-κC,N,C'-(Ar-2-yl)CH2NâCH(Ar'-2-yl)}Fe(PMe3)3 (Ar = 3,4,6-(F)3-C6H, Ar' = 3,5-(CF3)2-C6H2, 1a; Ar = 3,4,6-(F)3-C6H, Ar' = 3,4,5-(F)3-C6H, 1b; Ar = 4,5,6-(F)3-C6H, Ar' = 3,5-(CF3)2-C6H2, 1c; Ar = C6H4, Ar' = 3-(OMe)-C6H3, 1d; Ar = 4,5,6-(F)3-C6H, Ar' = 3,6-Me2-C6H3, 1e; Ar = C6H4, Ar' = 3,6-Me2-C6H2, 1f). Exposure of 1a-f to O2 caused rapid degradation, but substitution of the unique PMe3 with N2 occurred when 1a-f were exposed to air or N2 (1 atm), yielding {mer-κC,N,C'-(Ar-2-yl)CH2NâCH(Ar'-2-yl)}Fe(PMe3)2L (L = N2, 2a-f); CO, CNMe, and N2CPh2 derivatives (L = CO, 3a-d,f; L = CNMe, 8b; L = N2CPh2, 9b) were prepared. Dihydrogen or NH3 binding to {mer-κC,N,C'-(3,4,6-(F)3-C6H-2-yl)CH2NâCH-(3,4,5-(F)3-C6H-2-yl)}Fe(PMe3)2 (1b', S = 1 (calc)) to provide 5b (L = H2) or 6b (L = NH3) was found comparable to that of N2, while PMe3 (1b) and pyridine (L = py, 7b) adducts were unfavorable. Protolytic conditions were modeled using HCCR as weak acids, and trans-{κC,N-(3,4,5-(F)3-C6H2)CH2NâCH(3,4,6-(F)3-C6H-2-yl)}Fe(PMe3)3(CCR) (R = Me, 4b-Me; R = Ph, 4b-Ph) were generated from 1b. Exposure of 1b to N2O or N3SO2tol generated 2b and Me3PO or Me3PâN(SO2)tol, respectively. Calculations revealed 2b to be thermodynamically and kinetically favored over the calculated Fe(III) superoxide complex, (3)[FeO2], relative to 1b' + N2 + O2. The correlation of 1b' + (3)O2 to (3)[FeO2] is likely to have a relatively high intersystem crossing point (ICP) relative to 1b' + N2 to 2b, thereby explaining the dinitrogen selectivity.
Assuntos
Compostos Ferrosos/química , Iminas/química , Nitrogênio/química , Ar , Compostos Ferrosos/síntese química , Conformação MolecularRESUMO
The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands.
RESUMO
Molecular orbital analysis depicts the CNC(nb) backbone of the smif (1,3-di-(2-pyridyl)-2-azaallyl) ligand as having singlet diradical and/or ionic character where electrophilic or nucleophilic attack is plausible. Reversible dimerization of (smif)Fe{N(SiMe3)2} (1) to [{(Me3Si)2N}Fe]2(µ-κ(3),κ(3)-N,py2-smif,smif) (2) may be construed as diradical coupling. A proton transfer within the backbone-methylated, and o-pyridine-methylated smif of putative ((b)Me2(o)Me2smif)FeN(SiMe3)2 (8) provides a route to [{(Me3Si)2N}Fe]2(µ-κ(4),κ(4)-N,py2,C-((b)Me,(b)CH2,(o)Me2(smif)H))2 (9). A 3 + 2 cyclization of ditolyl-acetylene occurs with 1, leading to the dimer [{2,5-di(pyridin-2-yl)-3,4-di-(p-tolyl-2,5-dihydropyrrol-1-ide)}FeN(SiMe3)2]2 (11), and the collateral discovery of alkyne cyclotrimerization led to a brief study that identified Fe(N(SiMe3)2(THF) as an effective catalyst. Nucleophilic attack by (smif)2Fe (13) on (t)BuNCO and (2,6-(i)Pr2C6H3)NCO afforded (RNHCO-smif)2Fe (14a, R = (t)Bu; 14b, 2,6-(i)PrC6H3). Calculations suggested that (dpma)2Fe (15) would favorably lose dihydrogen to afford (smif)2Fe (13). H2-transfer to alkynes, olefins, imines, PhNâNPh, and ketones was explored, but only stoichiometric reactions were affected. Some physical properties of the compounds were examined, and X-ray structural studies on several dinuclear species were conducted.
RESUMO
A tetrakis(dialkylamino)phosphonium cation was evaluated as a functional group for alkaline anion exchange membranes (AAEMs). The base stability of [P(N(Me)Cy)(4)](+) was directly compared to that of [BnNMe(3)](+) in 1 M NaOD/CD(3)OD. The high base stability of [P(N(Me)Cy)(4)](+) relative to [BnNMe(3)](+) inspired the preparation of AAEM materials composed of phosphonium units attached to polyethylene. The AAEMs (hydroxide conductivity of 22 ± 1 mS cm(-1) at 22 °C) were prepared using ring-opening metathesis polymerization, and their stabilities were evaluated in 15 M KOH at 22 °C and in 1 M KOH at 80 °C.
RESUMO
Attempted syntheses of (smif)(2)Ti (smif =1,3-di-(2-pyridyl)-2-azaallyl) based on metatheses of TiCl(n)L(m) (n = 2-4) with M(smif) (M = Li, Na), in the presence of a reducing agent (Na/Hg) when necessary, failed, but several apparent Ti(II) species were identified by X-ray crystallography and multidimensional NMR spectroscopy: (smif){Li(smif-smif)}Ti (1, X-ray), [(smif)Ti](2)(µ-κ(3),κ(3)-N,N(py)(2)-smif,smif) (2), (smif)Ti(κ(3)-N,N(py)(2)-smif,(smif)H) (3), and (smif)Ti(dpma) (4, dpma = di-2-pyridylmethyl-amide). NMR spectroscopy and K-edge XAS showed that each compound possesses ligands that are redox noninnnocent, such that d(1) Ti(III) centers AF-couple to ligand radicals: (smif){Li(smif-smif)(2-)}Ti(III) (1), [(smif(2-))Ti(III)](2)(µ-κ(3),κ(3)-N,N(py)(2)-smif,smif) (2), [(smif(2-))Ti(III)](κ(3)-N,N(py)(2)-smif,(smif)H) (3), and (smif(2-))Ti(III)(dpma) (4). The instability of (smif)(2)Ti relative to its C-C coupled dimer, 2, is rationalized via the complementary nature of the amide and smif radical dianion ligands, which are also common to 3 and 4. Calculations support this contention.
Assuntos
Complexos de Coordenação/química , Piridinas/química , Titânio/química , Cristalografia por Raios X , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oxirredução , Espectrofotometria UltravioletaRESUMO
Typical C-C bond-forming processes feature oxidative addition, insertion, and reductive elimination reactions. An alternative strategy toward C-C bond formation involves the generation of transient radicals that can couple at or around one or more metal centers. Generation of transient azaallyl ligands that reductively couple at CH positions possessing radical character is described. Two C-C bonds form, and the redox non-innocence of the resulting pyridine-imines may be critical to formation of a third C-C bond via dinuclear di-imine oxidative coupling. Unique metal-metal bonds are a consequence of the chelation.
Assuntos
Carbono/química , Iminas/química , Metais Pesados/química , Compostos Organometálicos/síntese química , Piridinas/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/químicaRESUMO
A series of Werner complexes featuring the tridentate ligand smif, that is, 1,3-di-(2-pyridyl)-2-azaallyl, have been prepared. Syntheses of (smif)(2)M (1-M; M = Cr, Fe) were accomplished via treatment of M(NSiMe(3))(2)(THF)(n) (M = Cr, n = 2; Fe, n = 1) with 2 equiv of (smif)H (1,3-di-(2-pyridyl)-2-azapropene); ortho-methylated ((o)Mesmif)(2)Fe (2-Fe) and ((o)Me(2)smif)(2)Fe (3-Fe) were similarly prepared. Metatheses of MX(2) variants with 2 equiv of Li(smif) or Na(smif) generated 1-M (M = Cr, Mn, Fe, Co, Ni, Zn, Ru). Metathesis of VCl(3)(THF)(3) with 2 Li(smif) with a reducing equiv of Na/Hg present afforded 1-V, while 2 Na(smif) and IrCl(3)(THF)(3) in the presence of NaBPh(4) gave [(smif)(2)Ir]BPh(4) (1(+)-Ir). Electrochemical experiments led to the oxidation of 1-M (M = Cr, Mn, Co) by AgOTf to produce [(smif)(2)M]OTf (1(+)-M), and treatment of Rh(2)(O(2)CCF(3))(4) with 4 equiv Na(smif) and 2 AgOTf gave 1(+)-Rh. Characterizations by NMR, EPR, and UV-vis spectroscopies, SQUID magnetometry, X-ray crystallography, and DFT calculations are presented. Intraligand (IL) transitions derived from promotion of electrons from the unique CNC(nb) (nonbonding) orbitals of the smif backbone to ligand π*-type orbitals are intense (ε ≈ 10,000-60,000 M(-1)cm(-1)), dominate the UV-visible spectra, and give crystals a metallic-looking appearance. High energy K-edge spectroscopy was used to show that the smif in 1-Cr is redox noninnocent, and its electron configuration is best described as (smif(-))(smif(2-))Cr(III); an unusual S = 1 EPR spectrum (X-band) was obtained for 1-Cr.
Assuntos
Complexos de Coordenação/síntese química , Metais/química , Piridinas/síntese química , Cristalografia por Raios X , Eletroquímica , Elétrons , Ligantes , Espectroscopia de Ressonância Magnética , Magnetometria , Modelos Moleculares , Estrutura Molecular , Oxirredução , Teoria Quântica , Espectrofotometria InfravermelhoRESUMO
A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (k(fast)/k(slow)) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T(m) values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides.
Assuntos
Cobalto/química , Compostos de Epóxi/química , Catálise , Estrutura Molecular , Polimerização , Polipropilenos/química , EstereoisomerismoRESUMO
Activation of N(2) by (silox)(3)Ta (1, silox = (t)Bu(3)SiO) to afford (silox)(3)TaâN-NâTa(silox)(3) (1(2)-N(2)) does not occur despite ΔG°(cald) = -55.6 kcal/mol because of constraints of orbital symmetry, prompting efforts at an independent synthesis that included a study of REH(2) activation (E = N, P, As). Oxidative addition of REH(2) to 1 afforded (silox)(3)HTaEHR (2-NHR, R = H, Me, (n)Bu, C(6)H(4)-p-X (X = H, Me, NMe(2)); 2-PHR, R = H, Ph; 2-AsHR, R = H, Ph), which underwent 1,2-H(2)-elimination to form (silox)(3)TaâNR (1âNR; R = H, Me, (n)Bu, C(6)H(4)-p-X (X = H (X-ray), Me, NMe(2), CF(3))), (silox)(3)TaâPR (1âPR; R = H, Ph), and (silox)(3)TaâAsR (1âAsR; R = H, Ph). Kinetics revealed NH bond-breaking as critical, and As > N > P rates for (silox)(3)HTaEHPh (2-EHPh) were attributed to (1) ΔG°(calc)(N) < ΔG°(calc)(P) â¼ ΔG°(calc)(As); (2) similar fractional reaction coordinates (RCs), but with RC shorter for N < Pâ¼As; and (3) stronger TaE bonds for N > Pâ¼As. Calculations of the pnictidenes aided interpretation of UV-vis spectra. Addition of H(2)NNH(2) or H(2)N-N((c)NC(2)H(3)Me) to 1 afforded 1âNH, obviating these routes to 1(2)-N(2), and formation of (silox)(3)MeTaNHNH2 (4-NHNH(2)) and (silox)(3)MeTaNH(-(c)NCHMeCH(2)) (4-NH(azir)) occurred upon exposure to (silox)(3)TaâCH(2) (1âCH(2)). Thermolyses of 4-NHNH(2) and 4-NH(azir) yielded [(silox)(2)TaMe](µ-N(α)HN(ß))(µ-N(γ)HN(δ)H)[Ta(silox)(2)] (5) and [(silox)(3)MeTa](µ-η(2)-N,N:η(1)-C-NHNHCH(2)CH(2)CH(2))[Ta(κ-O,C-OSi(t)Bu(2)CMe(2)CH(2))(silox)(2)] (7, X-ray), respectively. (silox)(3)TaâCPPh(3) (1âCPPh(3), X-ray) was a byproduct from Ph(3)PCH(2) treatment of 1 to give 1âCH(2). Addition of Na(silox) to [(THF)(2)Cl(3)Ta](2)(µ-N(2)) led to [(silox)(2)ClTa](µ-N(2)) (8-Cl), and via subsequent methylation, [(silox)(2)MeTa](2)(µ-N(2)) (8-Me); both dimers were thermally stable. Orbital symmetry requirements for N(2) capture by 1 and pertinent calculations are given.
RESUMO
Application of the dipyridylazaallyl ligand (2-py)CHNCH(2-py) (smif) to a series of first-row transition metals afforded (smif)(2)M(n) [n = 0, M = Fe (1), Co (2), Ni (3); n = +1, M = Co (2+)] and {(TMS)(2)NFe}(2)(smif)(2) (4(2)) via metathetical procedures. The Mossbauer spectrum of 1 (S = 0) and TDDFT calculations, including a UV-vis spectral simulation, reveal it to be a covalent, strong-field system with Delta(o) estimated as approximately 18,000 cm(-1) and B approximately 470 cm(-1). (smif)(2)Co (2) has S = 1/2 according to SQUID data at 10 K. DFT calculations suggest that the odd electron is localized in a smif pi* orbital, i.e., smif is redox-active. EPR-silent (smif)(2)Ni (3) has S = 1 (SQUID), and calculations show that the unpaired spins reside in the d(z(2)) and d(x(2))(-y(2)) orbitals. X-ray structural parameters suggest that low-spin d(6) 1 and 2+ are relatively symmetric D(2d) species, but 2 and 3 manifest a distortion in which one smif is canted in the plane perpendicular to the other. (smif)FeN(TMS)(2) (4) is principally monomeric in solution, but reversibly dimerizes (K(eq) approximately 10(-4) M(-1)) via C-C bond formation in the azaallyl backbone to crystallize as {(TMS)(2)NFe}(2)(smif)(2) (4(2)). The azaallyl compounds possess extraordinary UV-vis absorptivities (epsilon approximately 18,000-52,000) at 580 +/- 15 nm and 406(25) nm that have been identified as intraligand bands with C(nb) --> smif pi* character.
RESUMO
We report the development of a facile ring-opening olefin metathesis route to alkaline anion exchange membranes via the copolymerization of a tetraalkylammonium-functionalized norbornene with dicyclopentadiene. The thin films generated are mechanically strong and exhibit high hydroxide conductivities and exceptional methanol tolerance.
RESUMO
Aryl-bromide ligand precursors have been prepared with the potential to afford tetradentate chelates (2-pyridylmethyl)(3-x)N(CH(2)-2-Aryl)(x) (x = 1, 2) containing metal-aryl linkages that promise to impart stronger fields about first row transition metals. Oxidative addition to Ni(COD)(2) afforded two diamagnetic Ni(II) complexes, {kappa-C,N,N(py)-(2-pyridylmethyl)N(CH(2)(4-(t)Bu-phenyl-2-yl))(CH(2)(4-(t)Bu-phenyl-2-Br))}NiBr (1-Ni) and {(kappa-C,N,N(py)(2)-(2-pyridylmethyl)(2)N(CH(2)(4-(t)Bu-phenyl-2-yl))}NiBr (2-Ni) in 96% and 67% yield, respectively. Extending these synthetic efforts to iron provided {kappa-C,N,N(py)(2)-(2-pyridylmethyl)(2)N(CH(2)(4-(t)Bu-phenyl-2-yl))}FeBr (2-Fe, X-ray) in 91% yield via reduction of an adduct, {kappa-N,N(py)(2)-(2-pyridylmethyl)(2)N(CH(2)(4-(t)Bu-phenyl-2-Br))}FeBr(2) (3-Fe). 5-Coordinate 2-Fe possessed a pseudo-tbp structure, and SQUID magnetometry showed it to be S = 2 with significant zero field splitting (ZFS). 2-Fe was initially prepared via oxidative addition to Fe{N(TMS)(2)}(2)(THF) upon disproportionation to "Fe(0)" and 2 Fe{N(TMS)(2)}(3), but when this approach was attempted with Cr{N(TMS)(2)}(2)(THF)(2), the azaallyl complex {kappa-N,N(py)(2)-1,3-dipyridyl-2-azaallyl}CrN(TMS)(2) ((smif)CrN(TMS)(2), 4-Cr, X-ray), formed instead (>50%) via amine debenzylation. An alternative route consisting of addition of 1,3-di-2-pyridyl-2-azapropene to Cr{N(TMS)(2)}(2)(THF)(2) afforded 4-Cr in 74% yield. Pseudo-square planar 4-Cr was also S = 2 (SQUID) with marked ZFS. The dipyridylazaallyl ligand "smif" imparts a remarkable optical density to 4-Cr via intraligand bands at 675 nm (epsilon approximately 15,000 M(-1)cm(-1)) and 396 nm (epsilon approximately 27,000 M(-1)cm(-1)). The effective fields of the chelate complexes are discussed, and a comparison of smif to isoelectronic NHC ligands is given.
RESUMO
A luminescent microporous metal-organic framework Tb(BTC)G has been developed for the recognition and sensing of anions, exhibiting a high-sensitivity sensing function with respect to fluoride.