Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 35(21): 4433-4435, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31099386

RESUMO

MOTIVATION: Tumor purity (TP) is the proportion of cancer cells in a tumor sample. TP impacts on the accurate assessment of molecular and genomics features as assayed with NGS approaches. State-of-the-art tools mainly rely on somatic copy-number alterations (SCNA) to quantify TP and therefore fail when a tumor genome is nearly euploid, i.e. 'non-aberrant' in terms of identifiable SCNAs. RESULTS: We introduce a computational method, tumor purity estimation from single-nucleotide variants (SNVs), which derives TP from the allelic fraction distribution of SNVs. On more than 7800 whole-exome sequencing data of TCGA tumor samples, it showed high concordance with a range of TP tools (Spearman's correlation between 0.68 and 0.82; >9 SNVs) and rescued TP estimates of 1, 194 samples (15%) pan-cancer. AVAILABILITY AND IMPLEMENTATION: TPES is available as an R package on CRAN and at https://bitbucket.org/l0ka/tpes.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Nucleotídeos , Software
2.
Neuro Oncol ; 26(8): 1453-1466, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38695342

RESUMO

BACKGROUND: Glioblastoma is a highly aggressive type of brain tumor for which there is no curative treatment available. Immunotherapies have shown limited responses in unselected patients, and there is an urgent need to identify mechanisms of treatment resistance to design novel therapy strategies. METHODS: Here we investigated the phenotypic and transcriptional dynamics at single-cell resolution during nivolumab immune checkpoint treatment of glioblastoma patients. RESULTS: We present the integrative paired single-cell RNA-seq analysis of 76 tumor samples from patients in a clinical trial of the PD-1 inhibitor nivolumab and untreated patients. We identify a distinct aggressive phenotypic signature in both tumor cells and the tumor microenvironment in response to nivolumab. Moreover, nivolumab-treatment was associated with an increased transition to mesenchymal stem-like tumor cells, and an increase in TAMs and exhausted and proliferative T cells. We verify and extend our findings in large external glioblastoma dataset (n = 298), develop a latent immune signature and find 18% of primary glioblastoma samples to be latent immune, associated with mesenchymal tumor cell state and TME immune response. Finally, we show that latent immune glioblastoma patients are associated with shorter overall survival following immune checkpoint treatment (P = .0041). CONCLUSIONS: We find a resistance mechanism signature in one fifth of glioblastoma patients associated with a tumor-cell transition to a more aggressive mesenchymal-like state, increase in TAMs and proliferative and exhausted T cells in response to immunotherapy. These patients may instead benefit from neuro-oncology therapies targeting mesenchymal tumor cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imunoterapia , Microambiente Tumoral , Humanos , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/terapia , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Nivolumabe/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Células-Tronco Mesenquimais/imunologia , Prognóstico , Taxa de Sobrevida , Biomarcadores Tumorais/genética , Feminino
3.
Cell Syst ; 13(2): 183-193.e7, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34731645

RESUMO

Pan-cancer studies sketched the genomic landscape of the tumor types spectrum. We delineated the purity- and ploidy-adjusted allele-specific profiles of 4,950 patients across 27 tumor types from the Cancer Genome Atlas (TCGA). Leveraging allele-specific data, we reclassified as loss of heterozygosity (LOH) 9% and 7% of apparent copy-number wild-type and gain calls, respectively, and overall observed more than 18 million allelic imbalance somatic events at the gene level. Reclassification of copy-number events revealed associations between driver mutations and LOH, pointing out the timings between the occurrence of point mutations and copy-number events. Integrating allele-specific genomics and matched transcriptomics, we observed that allele-specific gene status is relevant in the regulation of TP53 and its targets. Further, we disclosed the role of copy-neutral LOH in the impairment of tumor suppressor genes and in disease progression. Our results highlight the role of LOH in cancer and contribute to the understanding of tumor progression.


Assuntos
Perda de Heterozigosidade , Neoplasias , Alelos , Genômica , Humanos , Perda de Heterozigosidade/genética , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA