Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(2): e1008723, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33566853

RESUMO

[This corrects the article DOI: 10.1371/journal.pcbi.1007402.].

2.
PLoS Comput Biol ; 16(1): e1007402, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978043

RESUMO

Quantification of behaviour is essential for biology. Since the whisker system is a popular model, it is important to have methods for measuring whisker movements from behaving animals. Here, we developed a high-speed imaging system that measures whisker movements simultaneously from two vantage points. We developed a whisker tracker algorithm that automatically reconstructs 3D whisker information directly from the 'stereo' video data. The tracker is controlled via a Graphical User Interface that also allows user-friendly curation. The algorithm tracks whiskers, by fitting a 3D Bezier curve to the basal section of each target whisker. By using prior knowledge of natural whisker motion and natural whisker shape to constrain the fits and by minimising the number of fitted parameters, the algorithm is able to track multiple whiskers in parallel with low error rate. We used the output of the tracker to produce a 3D description of each tracked whisker, including its 3D orientation and 3D shape, as well as bending-related mechanical force. In conclusion, we present a non-invasive, automatic system to track whiskers in 3D from high-speed video, creating the opportunity for comprehensive 3D analysis of sensorimotor behaviour and its neural basis.


Assuntos
Imageamento Tridimensional/métodos , Vibrissas/diagnóstico por imagem , Vibrissas/fisiologia , Algoritmos , Animais , Fenômenos Biomecânicos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
J Neurosci ; 39(20): 3921-3933, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30850514

RESUMO

Perceptual decision making is an active process where animals move their sense organs to extract task-relevant information. To investigate how the brain translates sensory input into decisions during active sensation, we developed a mouse active touch task where the mechanosensory input can be precisely measured and that challenges animals to use multiple mechanosensory cues. Male mice were trained to localize a pole using a single whisker and to report their decision by selecting one of three choices. Using high-speed imaging and machine vision, we estimated whisker-object mechanical forces at millisecond resolution. Mice solved the task by a sensory-motor strategy where both the strength and direction of whisker bending were informative cues to pole location. We found competing influences of immediate sensory input and choice memory on mouse choice. On correct trials, choice could be predicted from the direction and strength of whisker bending, but not from previous choice. In contrast, on error trials, choice could be predicted from previous choice but not from whisker bending. This study shows that animal choices during active tactile decision making can be predicted from mechanosensory and choice-memory signals, and provides a new task well suited for the future study of the neural basis of active perceptual decisions.SIGNIFICANCE STATEMENT Due to the difficulty of measuring the sensory input to moving sense organs, active perceptual decision making remains poorly understood. The whisker system provides a way forward since it is now possible to measure the mechanical forces due to whisker-object contact during behavior. Here we train mice in a novel behavioral task that challenges them to use rich mechanosensory cues but can be performed using one whisker and enables task-relevant mechanical forces to be precisely estimated. This approach enables rigorous study of how sensory cues translate into action during active, perceptual decision making. Our findings provide new insight into active touch and how sensory/internal signals interact to determine behavioral choices.


Assuntos
Sinais (Psicologia) , Tomada de Decisões , Memória , Percepção do Tato , Tato , Animais , Tomada de Decisões/fisiologia , Masculino , Memória/fisiologia , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Estimulação Física , Percepção do Tato/fisiologia , Vibrissas/fisiologia
4.
Sci Rep ; 14(1): 21588, 2024 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284900

RESUMO

Sensory Adaptation (SA) is a prominent aspect of how neurons respond to sensory signals, ubiquitous across species and modalities. However, SA depends on the activation state of the brain and the extent to which SA is expressed in awake, behaving animals during active sensation remains unclear. Here, we addressed this question by training head-fixed mice to detect an object using their whiskers and recording neuronal activity from barrel cortex whilst simultaneously imaging the whiskers in 3D. We found that neuronal responses decreased during the course of whisker-object touch sequences and that this was due to two factors. First, a motor effect, whereby, during a sequence of touches, later touches were mechanically weaker than early ones. Second, a sensory encoding effect, whereby neuronal tuning to touch became progressively less sensitive during the course of a touch sequence. The sensory encoding effect was whisker-specific. These results show that SA does occur during active whisker sensing and suggest that SA is fundamental to sensation during natural behaviour.


Assuntos
Adaptação Fisiológica , Comportamento Animal , Córtex Somatossensorial , Vibrissas , Animais , Vibrissas/fisiologia , Camundongos , Córtex Somatossensorial/fisiologia , Comportamento Animal/fisiologia , Tato/fisiologia , Masculino , Neurônios/fisiologia , Sensação/fisiologia , Camundongos Endogâmicos C57BL
5.
Neuroscience ; 368: 95-108, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28843998

RESUMO

A fundamental question in the investigation of any sensory system is what physical signals drive its sensory neurons during natural behavior. Surprisingly, in the whisker system, it is only recently that answers to this question have emerged. Here, we review the key developments, focussing mainly on the first stage of the ascending pathway - the primary whisker afferents (PWAs). We first consider a biomechanical framework, which describes the fundamental mechanical forces acting on the whiskers during active sensation. We then discuss technical progress that has allowed such mechanical variables to be estimated in awake, behaving animals. We discuss past electrophysiological evidence concerning how PWAs function and reinterpret it within the biomechanical framework. Finally, we consider recent studies of PWAs in awake, behaving animals and compare the results to related studies of the cortex. We argue that understanding 'what the whiskers tell the brain' sheds valuable light on the computational functions of downstream neural circuits, in particular, the barrel cortex.


Assuntos
Vias Aferentes/fisiologia , Fenômenos Biomecânicos/fisiologia , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Gânglio Trigeminal/fisiologia , Vibrissas/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA