Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38819668

RESUMO

PURPOSE: Standardized reporting of treatment response in oncology patients has traditionally relied on methods like RECIST, PERCIST and Deauville score. These endpoints assess only a few lesions, potentially overlooking the response heterogeneity of all disease. This study hypothesizes that comprehensive spatial-temporal evaluation of all individual lesions is necessary for superior prognostication of clinical outcome. METHODS: [18F]FDG PET/CT scans from 241 patients (127 diffuse large B-cell lymphoma (DLBCL) and 114 non-small cell lung cancer (NSCLC)) were retrospectively obtained at baseline and either during chemotherapy or post-chemoradiotherapy. An automated TRAQinform IQ software (AIQ Solutions) analyzed the images, performing quantification of change in regions of interest suspicious of cancer (lesion-ROI). Multivariable Cox proportional hazards (CoxPH) models were trained to predict overall survival (OS) with varied sets of quantitative features and lesion-ROI, compared by bootstrapping with C-index and t-tests. The best-fit model was compared to automated versions of previously established methods like RECIST, PERCIST and Deauville score. RESULTS: Multivariable CoxPH models demonstrated superior prognostic power when trained with features quantifying response heterogeneity in all individual lesion-ROI in DLBCL (C-index = 0.84, p < 0.001) and NSCLC (C-index = 0.71, p < 0.001). Prognostic power significantly deteriorated (p < 0.001) when using subsets of lesion-ROI (C-index = 0.78 and 0.67 for DLBCL and NSCLC, respectively) or excluding response heterogeneity (C-index = 0.67 and 0.70). RECIST, PERCIST, and Deauville score could not significantly associate with OS (C-index < 0.65 and p > 0.1), performing significantly worse than the multivariable models (p < 0.001). CONCLUSIONS: Quantitative evaluation of response heterogeneity of all individual lesions is necessary for the superior prognostication of clinical outcome.

2.
Clin Genitourin Cancer ; 22(5): 102155, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39096564

RESUMO

INTRODUCTION: Treatment of men with metastatic prostate cancer can be difficult due to the heterogeneity of response of lesions. [68Ga]Ga-PSMA-11 (PSMA) PET/CT assists with monitoring and directing clinical intervention; however, the impact of response heterogeneity has yet to be related to outcome measures. The aim of this study was to assess the impact of quantitative imaging information on the value of PSMA PET/CT to assess patient outcomes in response evaluation. PATIENTS AND METHODS: Baseline and follow-up (6 months) PSMA PET/CT of 162 men with oligometastatic PC treated with standard clinical care were acquired between 2015 and 2016 for analysis. An augmentative software medical device was used to track lesions between scans and quantify lesion change to categorize them as either new, increasing, stable, decreasing, or disappeared. Quantitative imaging features describing the size, intensity, extent, change, and heterogeneity of change (based on percent change in SUVtotal) among lesions were extracted and evaluated for association with overall survival (OS) using Cox regression models. Model performance was evaluated using the c-index. RESULTS: Forty-one (25%) of subjects demonstrated heterogeneous response at follow-up, defined as having at least 1 new or increasing lesion and at least 1 decreasing or disappeared lesion. Subjects with heterogeneous response demonstrated significantly shorter OS than subjects without (median OS = 76.6 months vs. median OS not reached, P < .05, c-index = 0.61). In univariate analyses, SUVtotal at follow-up was most strongly associated with OS (HR = 1.29 [1.19, 1.40], P < .001, c-index = 0.73). Multivariable models applied using heterogeneity of change features demonstrated higher performance (c-index = 0.79) than models without (c-index = 0.71-0.76, P < .05). CONCLUSION: Augmentative software tools enhance the evaluation change on serial PSMA PET scans and can facilitate lesional evaluation between timepoints. This study demonstrates that a heterogeneous response at a lesional level may impact adversely on patient outcomes and supports further investigation to evaluate the role of imaging to guide individualized patient management to improve clinical outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA