Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275497

RESUMO

Superconducting circuits reveal themselves as promising physical devices with multiple uses. Within those uses, the fundamental concept of the geometric phase accumulated by the state of a system shows up recurrently, as, for example, in the construction of geometric gates. Given this framework, we study the geometric phases acquired by a paradigmatic setup: a transmon coupled to a superconductor resonating cavity. We do so both for the case in which the evolution is unitary and when it is subjected to dissipative effects. These models offer a comprehensive quantum description of an anharmonic system interacting with a single mode of the electromagnetic field within a perfect or dissipative cavity, respectively. In the dissipative model, the non-unitary effects arise from dephasing, relaxation, and decay of the transmon coupled to its environment. Our approach enables a comparison of the geometric phases obtained in these models, leading to a thorough understanding of the corrections introduced by the presence of the environment.

2.
Entropy (Basel) ; 25(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37761548

RESUMO

Shortcuts to adiabaticity (STA) are relevant in the context of quantum systems, particularly regarding their control when they are subjected to time-dependent external conditions. In this paper, we investigate the completion of a nonadiabatic evolution into a shortcut to adiabaticity for a quantum field confined within a one-dimensional cavity containing two movable mirrors. Expanding upon our prior research, we characterize the field's state using two Moore functions that enables us to apply reverse engineering techniques in constructing the STA. Regardless of the initial evolution, we achieve a smooth extension of the Moore functions that implements the STA. This extension facilitates the computation of the mirrors' trajectories based on the aforementioned functions. Additionally, we draw attention to the existence of a comparable problem within nonrelativistic quantum mechanics.

3.
Entropy (Basel) ; 25(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36673159

RESUMO

The development of quantum technologies present important challenges such as the need for fast and precise protocols for implementing quantum operations. Shortcuts to adiabaticity (STAs) are a powerful tool for achieving these goals, as they enable us to perform an exactly adiabatic evolution in finite time. In this paper, we present a shortcut to adiabaticity for the control of an optomechanical cavity with two moving mirrors. Given reference trajectories for the mirrors, we find analytical expressions that give us effective trajectories which implement an STA for the quantum field inside the cavity. We then solve these equations numerically for different reference protocols, such as expansions, contractions and rigid motions, thus confirming the successful implementation of the STA and finding some general features of these effective trajectories.

4.
Phys Rev Lett ; 108(26): 261301, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-23004956

RESUMO

We study the process of decoherence in acoustic black holes. We focus on the ion trap model proposed by Horstmann et al. [Phys. Rev. Lett. 104, 250403 (2010)], but the formalism is general to any experimental implementation. For that particular setup, we compute the decoherence time for the experimental parameters that they proposed. We find that a quantum to classical transition occurs during the measurement, and we propose improved parameters to avoid such a feature. We also study the entanglement between the Hawking-pair phonons for an acoustic black hole while in contact with a reservoir, through the quantum correlations, showing that they remain strongly correlated for small enough times and temperatures.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(6 Pt 2): 066105, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16906912

RESUMO

We study the effects of the environment on tunneling in an open system described by a static double-well potential. We describe the evolution of a quantum state localized in one of the minima of the potential at t = 0, in both the limits of high and zero environment temperature. We show that the evolution of the system can be summarized in terms of three main physical phenomena--namely, decoherence, quantum tunneling, and noise-induced activation--and we obtain analytical estimates for the corresponding time scales. These analytical predictions are confirmed by large-scale numerical simulations, providing a detailed picture of the main stages of the evolution and of the relevant dynamical processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA