Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(47): E5096-104, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385629

RESUMO

Bacteria play many important roles in animal digestive systems, including the provision of enzymes critical to digestion. Typically, complex communities of bacteria reside in the gut lumen in direct contact with the ingested materials they help to digest. Here, we demonstrate a previously undescribed digestive strategy in the wood-eating marine bivalve Bankia setacea, wherein digestive bacteria are housed in a location remote from the gut. These bivalves, commonly known as shipworms, lack a resident microbiota in the gut compartment where wood is digested but harbor endosymbiotic bacteria within specialized cells in their gills. We show that this comparatively simple bacterial community produces wood-degrading enzymes that are selectively translocated from gill to gut. These enzymes, which include just a small subset of the predicted wood-degrading enzymes encoded in the endosymbiont genomes, accumulate in the gut to the near exclusion of other endosymbiont-made proteins. This strategy of remote enzyme production provides the shipworm with a mechanism to capture liberated sugars from wood without competition from an endogenous gut microbiota. Because only those proteins required for wood digestion are translocated to the gut, this newly described system reveals which of many possible enzymes and enzyme combinations are minimally required for wood degradation. Thus, although it has historically had negative impacts on human welfare, the shipworm digestive process now has the potential to have a positive impact on industries that convert wood and other plant biomass to renewable fuels, fine chemicals, food, feeds, textiles, and paper products.


Assuntos
Bactérias/classificação , Digestão , Comportamento Alimentar , Brânquias/microbiologia , Moluscos/metabolismo , Madeira , Animais , Metagenoma , Dados de Sequência Molecular , Filogenia
2.
Proc Natl Acad Sci U S A ; 107(45): 19213-8, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20956333

RESUMO

Engineering efficient, directional electronic communication between living and nonliving systems has the potential to combine the unique characteristics of both materials for advanced biotechnological applications. However, the cell membrane is designed by nature to be an insulator, restricting the flow of charged species; therefore, introducing a biocompatible pathway for transferring electrons across the membrane without disrupting the cell is a significant challenge. Here we describe a genetic strategy to move intracellular electrons to an inorganic extracellular acceptor along a molecularly defined route. To do so, we reconstitute a portion of the extracellular electron transfer chain of Shewanella oneidensis MR-1 into the model microbe Escherichia coli. This engineered E. coli can reduce metal ions and solid metal oxides ∼8× and ∼4× faster than its parental strain. We also find that metal oxide reduction is more efficient when the extracellular electron acceptor has nanoscale dimensions. This work demonstrates that a genetic cassette can create a conduit for electronic communication from living cells to inorganic materials, and it highlights the importance of matching the size scale of the protein donors to inorganic acceptors.


Assuntos
Biotecnologia/métodos , Transporte de Elétrons , Bactérias Gram-Negativas/genética , Metais/química , Membrana Celular , Escherichia coli/genética , Oxirredução , Óxidos/química , Engenharia de Proteínas , Shewanella/genética
3.
J Biol Inorg Chem ; 17(1): 11-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21805398

RESUMO

Cytochromes c(7) are periplasmic triheme proteins that have been reported exclusively in δ-proteobacteria. The structures of five triheme cytochromes identified in Geobacter sulfurreducens and one in Desulfuromonas acetoxidans have been determined. In addition to the hemes and axial histidines, a single aromatic residue is conserved in all these proteins-phenylalanine 15 (F15). PpcA is a member of the G. sulfurreducens cytochrome c(7) family that performs electron/proton energy transduction in addition to electron transfer that leads to the reduction of extracellular electron acceptors. For the first time we probed the role of the F15 residue in the PpcA functional mechanism, by replacing this residue with the aliphatic leucine by site-directed mutagenesis. The analysis of NMR spectra of both oxidized and reduced forms showed that the heme core and the overall fold of the mutated protein were not affected. However, the analysis of (1)H-(15)N heteronuclear single quantum coherence NMR spectra evidenced local rearrangements in the α-helix placed between hemes I and III that lead to structural readjustments in the orientation of heme axial ligands. The detailed thermodynamic characterization of F15L mutant revealed that the reduction potentials are more negative and the redox-Bohr effect is decreased. The redox potential of heme III is most affected. It is of interest that the mutation in F15, located between hemes I and III in PpcA, changes the characteristics of the two hemes differently. Altogether, these modifications disrupt the balance of the global network of cooperativities, preventing the F15L mutant protein from performing a concerted electron/proton transfer.


Assuntos
Grupo dos Citocromos c/química , Grupo dos Citocromos c/metabolismo , Fenilalanina/metabolismo , Sequência de Aminoácidos , Grupo dos Citocromos c/genética , Desulfuromonas/química , Geobacter/química , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Alinhamento de Sequência , Termodinâmica
4.
Bioinorg Chem Appl ; 2012: 298739, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22899897

RESUMO

The bacterium Geobacter sulfurreducens (Gs) can grow in the presence of extracellular terminal acceptors, a property that is currently explored to harvest electricity from aquatic sediments and waste organic matter into microbial fuel cells. A family composed of five triheme cytochromes (PpcA-E) was identified in Gs. These cytochromes play a crucial role by bridging the electron transfer from oxidation of cytoplasmic donors to the cell exterior and assisting the reduction of extracellular terminal acceptors. The detailed thermodynamic characterization of such proteins showed that PpcA and PpcD have an important redox-Bohr effect that might implicate these proteins in the e(-)/H(+) coupling mechanisms to sustain cellular growth. The physiological relevance of the redox-Bohr effect in these proteins was studied by determining the fractional contribution of each individual redox-microstate at different pH values. For both proteins, oxidation progresses from a particular protonated microstate to a particular deprotonated one, over specific pH ranges. The preferred e(-)/H(+) transfer pathway established by the selected microstates indicates that both proteins are functionally designed to couple e(-)/H(+) transfer at the physiological pH range for cellular growth.

5.
Biophys J ; 99(1): 293-301, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20655858

RESUMO

A family of five periplasmic triheme cytochromes (PpcA-E) was identified in Geobacter sulfurreducens, where they play a crucial role by driving electron transfer from the cytoplasm to the cell exterior and assisting the reduction of extracellular acceptors. The thermodynamic characterization of PpcA using NMR and visible spectroscopies was previously achieved under experimental conditions identical to those used for the triheme cytochrome c(7) from Desulfuromonas acetoxidans. Under such conditions, attempts to obtain NMR data were complicated by the relatively fast intermolecular electron exchange. This work reports the detailed thermodynamic characterization of PpcB, PpcD, and PpcE under optimal experimental conditions. The thermodynamic characterization of PpcA was redone under these new conditions to allow a proper comparison of the redox properties with those of other members of this family. The heme reduction potentials of the four proteins are negative, differ from each other, and cover different functional ranges. These reduction potentials are strongly modulated by heme-heme interactions and by interactions with protonated groups (the redox-Bohr effect) establishing different cooperative networks for each protein, which indicates that they are designed to perform different functions in the cell. PpcA and PpcD appear to be optimized to interact with specific redox partners involving e(-)/H(+) transfer via different mechanisms. Although no evidence of preferential electron transfer pathway or e(-)/H(+) coupling was found for PpcB and PpcE, the difference in their working potential ranges suggests that they may also have different physiological redox partners. This is the first study, to our knowledge, to characterize homologous cytochromes from the same microorganism and provide evidence of their different mechanistic and functional properties. These findings provide an explanation for the coexistence of five periplasmic triheme cytochromes in G. sulfurreducens.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Citocromos/química , Citocromos/metabolismo , Geobacter , Modelos Moleculares , Oxirredução , Conformação Proteica , Solubilidade , Termodinâmica
6.
Biochem Biophys Res Commun ; 393(3): 466-70, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20152799

RESUMO

Multiheme proteins play major roles in various biological systems. Structural information on these systems in solution is crucial to understand their functional mechanisms. However, the presence of numerous proton-containing groups in the heme cofactors and the magnetic properties of the heme iron, in particular in the oxidised state, complicates significantly the assignment of the NMR signals. Consequently, the multiheme proteins superfamily is extremely under-represented in structural databases, which constitutes a severe bottleneck in the elucidation of their structural-functional relationships. In this work, we present a strategy that simplifies the assignment of the NMR signals in multiheme proteins and, concomitantly, their solution structure determination, using the triheme cytochrome PpcA from the bacterium Geobacter sulfurreducens as a model. Cost-effective isotopic labeling was used to double label (13C/15N) the protein in its polypeptide chain, with the correct folding and heme post-translational modifications. The combined analysis of 1H-13C HSQC NMR spectra obtained for labeled and unlabeled samples of PpcA allowed a straight discrimination between the heme cofactors and the polypeptide chain signals and their confident assignment. The results presented here will be the foundations to assist solution structure determination of multiheme proteins, which are still very scarce in the literature.


Assuntos
Coenzimas/química , Hemeproteínas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Cristalografia , Citocromos/química , Geobacter/enzimologia , Heme/química , Marcação por Isótopo
7.
Biochem J ; 420(3): 485-92, 2009 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-19351328

RESUMO

Multihaem cytochromes that could form protein "nanowires" were identified in the Geobacter sulfurreducens genome, and represent a new type of multihaem cytochrome. The sequences of these proteins, two with 12 haems (GSU1996, GSU0592) and one with 27 haems (GSU2210), suggest that they are formed with domains homologous to the trihaem cytochrome c7. Although all three haems have bis-His co-ordination in cytochromes c7, in each domain of the above polymers, the haem equivalent to haem IV has His-Met co-ordination. We previously determined the structure and measured the macroscopic redox potential of one representative domain (domain C) of a dodecahaem cytochrome (GSU1996). In the present study, the microscopic redox properties of the individual haem groups of domain C were determined using NMR and UV-visible spectroscopies. The reduction potentials of the haems for the fully reduced and protonated protein are different from each other (haem I, -106 mV; haem III, -136 mV; and haem IV, -125 mV) and are strongly modulated by redox interactions. This result is rather surprising since the His-Met co-ordinated haem IV does not have the highest potential as was expected. The polypeptide environment of each haem group and the strong haem pairwise redox interactions must play a dominant role in controlling the individual haem potentials. The strong redox interactions between the haems extend the range of their operating potentials at physiological pH (haem I, -71 mV, haem III, -146 mV and haem IV, -110 mV). Such a modulation in haem potentials is likely to have a functional significance in the metabolism of G. sulfurreducens.


Assuntos
Grupo dos Citocromos c/química , Geobacter/química , Heme/química , Termodinâmica , Sequência de Aminoácidos , Grupo dos Citocromos c/genética , Geobacter/genética , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Polímeros/química , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta
8.
Biochim Biophys Acta ; 1777(9): 1157-65, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18534185

RESUMO

The redox properties of a periplasmic triheme cytochrome, PpcB from Geobacter sulfurreducens, were studied by NMR and visible spectroscopy. The structure of PpcB was determined by X-ray diffraction. PpcB is homologous to PpcA (77% sequence identity), which mediates cytoplasmic electron transfer to extracellular acceptors and is crucial in the bioenergetic metabolism of Geobacter spp. The heme core structure of PpcB in solution, probed by 2D-NMR, was compared to that of PpcA. The results showed that the heme core structures of PpcB and PpcA in solution are similar, in contrast to their crystal structures where the heme cores of the two proteins differ from each other. NMR redox titrations were carried out for both proteins and the order of oxidation of the heme groups was determined. The microscopic properties of PpcB and PpcA redox centers showed important differences: (i) the order in which hemes become oxidized is III-I-IV for PpcB, as opposed to I-IV-III for PpcA; (ii) the redox-Bohr effect is also different in the two proteins. The different redox features observed between PpcB and PpcA suggest that each protein uniquely modulates the properties of their co-factors to assure effectiveness in their respective metabolic pathways. The origins of the observed differences are discussed.


Assuntos
Citocromos/química , Geobacter/química , Heme/química , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Oxirredução , Alinhamento de Sequência , Solventes , Espectrofotometria Ultravioleta , Titulometria
9.
J Phys Chem B ; 123(14): 3050-3060, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30875222

RESUMO

The triheme cytochrome PpcA from Geobacter sulfurreducens is highly abundant under several growth conditions and is important for extracellular electron transfer. PpcA plays a central role in transferring electrons resulting from the cytoplasmic oxidation of carbon compounds to the cell exterior. This cytochrome is designed to couple electron and proton transfer at physiological pH, a process achieved via the selection of dominant microstates during the redox cycle of the protein, which are ultimately regulated by a well-established order of oxidation of the heme groups. The three hemes are covered only by a polypeptide chain of 71 residues and are located in the small hydrophobic core of the protein. In this work, we used NMR and X-ray crystallography to investigate the structural and functional role of a conserved valine residue (V13) located within van der Waals contact of hemes III and IV. The residue was replaced by alanine (V13A), isoleucine (V13I), serine (V13S), and threonine (V13T) to probe the effects of the side chain volume and polarity. All mutants were found to be as equally thermally stable as the native protein. The V13A and V13T mutants produced crystals and their structures were determined. The side chain of the threonine residue introduced in V13T showed two conformations, but otherwise the two structures did not show significant changes from the native structure. Analysis of the redox behavior of the four mutants showed that for the hydrophobic replacements (V13A and V13I) the redox properties, and hence the order of oxidation of the hemes, were unaffected in spite of the larger side chain, isoleucine, showing two conformations with minor changes of the protein in the heme core. On the other hand, the polar replacements (V13S and V13T) showed the presence of two more distinctive conformations, and the oxidation order of the hemes was altered. Overall, it is striking that a single residue with proper size and polarity, V13, was naturally selected to ensure a unique conformation of the protein and the order of oxidation of the hemes, endowing the cytochrome PpcA with the optimal functional properties necessary to ensure effectiveness in the extracellular electron transfer respiratory pathways of G. sulfurreducens.


Assuntos
Proteínas de Bactérias/química , Grupo dos Citocromos c/química , Geobacter/metabolismo , Valina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Heme/química , Heme/metabolismo , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína
10.
Protein Expr Purif ; 59(1): 182-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18343156

RESUMO

Progresses made in bacterial genome sequencing show a remarkable profusion of multiheme c-type cytochromes in many bacteria, highlighting the importance of these proteins in different cellular events. However, the characterization of multiheme cytochromes has been significantly retarded by the numerous experimental challenges encountered by researchers who attempt to overexpress these proteins, especially if isotopic labeling is required. Here we describe a methodology for isotopic labeling of multiheme cytochromes c overexpressed in Escherichia coli, using the triheme cytochrome PpcA from Geobacter sulfurreducens as a model protein. By combining different strategies previously described and using E. coli cells containing the gene coding for PpcA and the cytochrome c maturation gene cluster, an experimental labeling methodology was developed that is based on two major aspects: (i) use of a two-step culture growth procedure, where cell growth in rich media was followed by transfer to minimal media containing (15)N-labeled ammonium chloride, and (ii) incorporation of the heme precursor delta-aminolevulinic acid in minimal culture media. The yields of labeled protein obtained were comparable to those obtained for expression of PpcA in rich media. Proper protein folding and labeling were confirmed by UV-visible and NMR spectroscopy. To our knowledge, this is the first report of a recombinant multiheme cytochrome labeling and it represents a major breakthrough for functional and structural studies of multiheme cytochromes.


Assuntos
Citocromos c/biossíntese , Escherichia coli/metabolismo , Marcação por Isótopo/métodos , Técnicas Bacteriológicas/métodos , Cromatografia por Troca Iônica , Citocromos c/genética , Eletroforese em Gel de Poliacrilamida , Geobacter/metabolismo , Isótopos de Nitrogênio
11.
Protein Expr Purif ; 62(1): 128-37, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18657620

RESUMO

Integrated studies that address proteins structure and function in the new era of systems biology and genomics often require the application of high-throughput approaches for parallel production of many different purified proteins from the same organism. Cytochromes c-electron transfer proteins carrying one or more hemes covalently bound to the polypeptide chain-are essential in most organisms. However, they are one of the most recalcitrant classes of proteins with respect to heterologous expression because post-translational incorporation of hemes is required for proper folding and stability. We have addressed this challenge by designing two families of vectors (total of 6 vectors) suitable for ligation-independent cloning and developing a pipeline for expression and solubility analysis of cytochromes c. This system has been validated by expression analysis of thirty genes from Shewanella oneidensis coding for cytochromes c or cytochromes c-type domains predicted to have 1-4 hemes. Out of 30 targets, 26 (87%) were obtained in soluble form in one or more vectors. This work establishes a methodology for high-throughput expression of this class of proteins and provides a clone resource for the microbiological and functional genomics research communities.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Citocromos c/biossíntese , Citocromos c/genética , Shewanella/metabolismo , Clonagem Molecular , Citocromos c/metabolismo , Ligantes , Periplasma/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Shewanella/genética
12.
FEMS Microbiol Lett ; 258(2): 173-81, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16640569

RESUMO

Geobacter sulfurreducens encodes one of the largest numbers of proteins annotated as parts of the two-component signal transduction and/or chemotaxis pathways. Ten of these signal transducers have homologous periplasmic sensor domains that contain the sequence signature for c-type hemes. One such sensor domain encoded by gene GSU0303 was isolated and characterized. The protein was expressed in Escherichia coli and was isolated as two colored species (green and red). The green species is a monomer of the sensor domain with a five-coordinated high-spin heme and the red species is probably a noncovalent dimer of the sensor domain which might have an uncharacterized ligand bound to the dimer. The UV-VIS spectrum of the green species indicates that it has a c'-type heme, but its structure is predicted to be homologous to CitA, a periplasmic PAS domain that does not contain heme. The GSU0303 sensor domain represents a previously unreported family of PAS-type periplasmic sensor domains that contain c-type hemes; these proteins could be part of an important mechanism for sensing redox potential or small ligands in the periplasm. Homologs to the sensor domains we identified in G. sulfurreducens are observed in various bacteria although they occur in larger numbers in the Geobacteraceae.


Assuntos
Proteínas de Bactérias/química , Geobacter/metabolismo , Heme/química , Proteínas Periplásmicas/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Quimiotaxia , Escherichia coli/genética , Geobacter/genética , Dados de Sequência Molecular , Família Multigênica , Proteínas Periplásmicas/genética , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de Proteína , Transdução de Sinais , Espectrofotometria Ultravioleta
13.
Biochim Biophys Acta ; 1554(3): 202-11, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12160993

RESUMO

Multiheme cytochromes c have been found in a number of sulfate- and metal ion-reducing bacteria. Geobacter sulfurreducens is one of a family of microorganisms that oxidize organic compounds, with Fe(III) oxide as the terminal electron acceptor. A triheme 9.6 kDa cytochrome c(7) from G. sulfurreducens is a part of the metal ion reduction pathway. We cloned the gene for cytochrome c(7) and expressed it in Escherichia coli together with the cytochrome c maturation gene cluster, ccmABCDEFGH, on a separate plasmid. We designed two constructs, with and without an N-terminal His-tag. The untagged version provided a good yield (up to 6 mg/l of aerobic culture) of the fully matured protein, with all three hemes attached, while the N-terminal His-tag appeared to be detrimental for proper heme incorporation. The recombinant protein (untagged) is properly folded, it has the same molecular weight and displays the same absorption spectra, both in reduced and in oxidized forms, as the protein isolated from G. sulfurreducens and it is capable of reducing metal ions in vitro. The shape parameters for the recombinant cytochrome c(7) determined by small angle X-ray scattering are in good agreement with the ones calculated from a homologous cytochrome c(7) of known structure.


Assuntos
Grupo dos Citocromos c/química , Deltaproteobacteria/enzimologia , Grupo dos Citocromos c/biossíntese , Escherichia coli/genética , Proteínas Recombinantes/biossíntese , Espalhamento de Radiação , Raios X
14.
Front Microbiol ; 6: 752, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284042

RESUMO

Multiheme cytochromes have been implicated in Geobacter sulfurreducens extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by G. sulfurreducens. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Over the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of G. sulfurreducens multiheme cytochromes and also to identify key residues in these proteins for EET. In previous studies, we set the foundations for enhancement of the EET abilities of G. sulfurreducens by characterizing a family of five triheme cytochromes (PpcA-E). These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell's outer surface. The results obtained suggested that PpcA can couple e(-)/H(+) transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e(-)/H(+) transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of G. sulfurreducens. For the first time G. sulfurreducens strains have been manipulated by the introduction of mutant forms of essential proteins with the aim to develop and improve bioelectrochemical technologies.

15.
Protein Sci ; 13(6): 1684-92, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15133162

RESUMO

The structure of a novel c(7)-type cytochrome domain that has two bishistidine coordinated hemes and one heme with histidine, methionine coordination (where the sixth ligand is a methionine residue) was determined at 1.7 A resolution. This domain is a representative of domains that form three polymers encoded by the Geobacter sulfurreducens genome. Two of these polymers consist of four and one protein of nine c(7)-type domains with a total of 12 and 27 hemes, respectively. Four individual domains (termed A, B, C, and D) from one such multiheme cytochrome c (ORF03300) were cloned and expressed in Escherichia coli. The domain C produced diffraction quality crystals from 2.4 M sodium malonate (pH 7). The structure was solved by MAD method and refined to an R-factor of 19.5% and R-free of 21.8%. Unlike the two c(7) molecules with known structures, one from G. sulfurreducens (PpcA) and one from Desulfuromonas acetoxidans where all three hemes are bishistidine coordinated, this domain contains a heme which is coordinated by a methionine and a histidine residue. As a result, the corresponding heme could have a higher potential than the other two hemes. The apparent midpoint reduction potential, E(app), of domain C is -105 mV, 50 mV higher than that of PpcA.


Assuntos
Grupo dos Citocromos c/química , Heme/química , Sequência de Aminoácidos , Clonagem Molecular , Cristalografia por Raios X , Grupo dos Citocromos c/genética , Desulfuromonas/química , Desulfuromonas/genética , Expressão Gênica , Geobacter/química , Geobacter/genética , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Titulometria
16.
PLoS One ; 9(8): e105566, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25153891

RESUMO

PpcA is the most abundant member of a family of five triheme cytochromes c7 in the bacterium Geobacter sulfurreducens (Gs) and is the most likely carrier of electrons destined for outer surface during respiration on solid metal oxides, a process that requires extracellular electron transfer. This cytochrome has the highest content of lysine residues (24%) among the family, and it was suggested to be involved in e-/H(+) energy transduction processes. In the present work, we investigated the functional role of lysine residues strategically located in the vicinity of each heme group. Each lysine was replaced by glutamine or glutamic acid to evaluate the effects of a neutral or negatively charged residue in each position. The results showed that replacing Lys9 (located near heme IV), Lys18 (near heme I) or Lys22 (between hemes I and III) has essentially no effect on the redox properties of the heme groups and are probably involved in redox partner recognition. On the other hand, Lys43 (near heme IV), Lys52 (between hemes III and IV) and Lys60 (near heme III) are crucial in the regulation of the functional mechanism of PpcA, namely in the selection of microstates that allow the protein to establish preferential e-/H(+) transfer pathways. The results showed that the preferred e-/H(+) transfer pathways are only established when heme III is the last heme to oxidize, a feature reinforced by a higher difference between its reduction potential and that of its predecessor in the order of oxidation. We also showed that K43 and K52 mutants keep the mechanistic features of PpcA by establishing preferential e-/H+ transfer pathways at lower reduction potential values than the wild-type protein, a property that can enable rational design of Gs strains with optimized extracellular electron transfer capabilities.


Assuntos
Proteínas de Bactérias/metabolismo , Grupo dos Citocromos c/metabolismo , Geobacter/metabolismo , Heme/metabolismo , Transporte de Elétrons , Conformação Proteica
17.
Biosci Rep ; 33(1): 11-22, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23030844

RESUMO

The bacterium Gs (Geobacter sulfurreducens) is capable of oxidizing a large variety of compounds relaying electrons out of the cytoplasm and across the membranes in a process designated as extracellular electron transfer. The trihaem cytochrome PpcA is highly abundant in Gs and is most probably the reservoir of electrons destined for the outer surface. In addition to its role in electron transfer pathways, we have previously shown that this protein could perform e(-)/H(+) energy transduction. This mechanism is achieved by selecting the specific redox states that the protein can access during the redox cycle and might be related to the formation of proton electrochemical potential gradient across the periplasmic membrane. The regulatory role of haem III in the functional mechanism of PpcA was probed by replacing Met(58), a residue that controls the solvent accessibility of haem III, with serine, aspartic acid, asparagine or lysine. The data obtained from the mutants showed that the preferred e(-)/H(+) transfer pathway observed for PpcA is strongly dependent on the reduction potential of haem III. It is striking to note that one residue can fine tune the redox states that can be accessed by the trihaem cytochrome enough to alter the functional pathways.


Assuntos
Proteínas de Bactérias/metabolismo , Citocromos c/metabolismo , Geobacter/metabolismo , Metionina/metabolismo , Proteínas de Bactérias/genética , Citocromos c/genética , Transporte de Elétrons , Escherichia coli/genética , Escherichia coli/metabolismo , Geobacter/genética , Heme/metabolismo , Concentração de Íons de Hidrogênio , Lisina/genética , Lisina/metabolismo , Espectroscopia de Ressonância Magnética , Metionina/genética , Mutagênese Sítio-Dirigida , Oxirredução , Soluções/metabolismo , Termodinâmica
18.
Methods Mol Biol ; 705: 123-50, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21125384

RESUMO

Answering questions about proteins' structures and functions in the new era of systems biology and genomics requires the development of new methods for heterologous production of numerous proteins from newly sequenced genomes. Cytochromes c - electron transfer proteins carrying one or more hemes covalently bound to the polypeptide chain - are one of the most recalcitrant classes of proteins with respect to heterologous expression because post-translational incorporation of hemes is required for proper folding and stability. However, significant advances in expression of recombinant cytochromes c have been made during the last decade. It has been shown that a single gene cluster, ccmA-H, is responsible for cytochrome c maturation in Escherichia coli under anaerobic conditions and that constitutive co-expression of this cluster under aerobic conditions is sufficient to provide heme incorporation in many different types of cytochromes c, regardless of their origin, as long as the nascent polypeptide is translocated to the periplasm. Using conditions that result in sub-maximal protein induction can dramatically increase the yield of mature protein. The intrinsic peroxidase activity of hemes can be used as a highly selective and sensitive detection method of mature cytochromes in samples resolved by gel electrophoresis.


Assuntos
Citocromos c/biossíntese , Escherichia coli/metabolismo , Expressão Gênica , Proteínas Recombinantes/biossíntese , Citocromos c/genética , Estabilidade Enzimática , Escherichia coli/genética , Heme/genética , Heme/metabolismo , Família Multigênica/fisiologia , Periplasma/genética , Periplasma/metabolismo , Proteínas Recombinantes/genética
19.
Biochem Biophys Res Commun ; 360(1): 194-8, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17583674

RESUMO

Multiheme c-type cytochromes from members of the Desulfovibrionacea and Geobactereacea families play crucial roles in the bioenergetics of these microorganisms. Thermodynamic studies using NMR and visible spectroscopic techniques on tetraheme cytochromes c(3) isolated from Desulfovibrio spp. and more recently on a triheme cytochrome from Geobacter sulfurreducens showed that the properties of each redox centre are modulated by the neighbouring redox centres enabling these proteins to perform energy transduction and thus contributing to cellular energy conservation. Electron/proton transfer coupling relies on redox-linked conformational changes that were addressed for some multiheme cytochromes from the comparison of protein structure of fully reduced and fully oxidised forms. In this work, we identify for the first time in a multiheme cytochrome the simultaneous presence of two different conformations in solution. This was achieved by probing the different oxidation stages of a triheme cytochrome isolated from G. sulfurreducens using 2D-NMR techniques. The results presented here will be the foundations to evaluate the modulation of the redox centres properties by conformational changes that occur during the reoxidation of a multiheme protein.


Assuntos
Citocromos c/química , Citocromos c/ultraestrutura , Geobacter/enzimologia , Heme/química , Oxigênio/química , Oxirredução , Conformação Proteica
20.
Protein Expr Purif ; 47(1): 241-8, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16403647

RESUMO

Multiheme cytochromes c are difficult to produce in heterologous systems. The genome of delta-proteobacterium Geobacter sulfurreducens contains more than a hundred genes coding for c-type cytochromes. Among those are two dodecaheme cytochromes c representing a new class of multiheme cytochromes, whose putative structure is a one-dimensional array of small highly homologous domains that contain three hemes and are covalently bound by short linkers. They are likely to form "nanowires" that are part of the electron transfer chain. We cloned the genes coding for the two cytochromes into a vector we developed for ligation-independent cloning of proteins targeted to the Escherichia coli periplasmic space. We expressed the proteins in E. coli co-transformed with a plasmid harboring the cytochrome c maturation genes. Expression levels were optimized by varying IPTG concentrations used for induction. Although both proteins appeared insoluble or strongly associated with cell membranes, they were solubilized using 0.5 M sodium chloride which was more selective than conventional solubilizing agents, such as HEGA-10 or beta-octylglucoside. The solubilized proteins were dialyzed and purified by cation exchange chromatography followed by gel filtration. Mass-spectrometry analysis confirmed that both purified proteins contained the complete set of covalently attached hemes, 12 per molecule. Their visible spectra were typical of c-type cytochromes. Both proteins were successfully crystallized.


Assuntos
Citocromos c/biossíntese , Citocromos c/genética , Geobacter/enzimologia , Geobacter/genética , Sequência de Aminoácidos , Clonagem Molecular , Citocromos c/química , Escherichia coli/enzimologia , Escherichia coli/genética , Vetores Genéticos , Ligantes , Dados de Sequência Molecular , Periplasma/enzimologia , Periplasma/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA