Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Euro Surveill ; 29(25)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38904109

RESUMO

Highly pathogenic avian influenza (HPAI) has caused widespread mortality in both wild and domestic birds in Europe 2020-2023. In July 2023, HPAI A(H5N1) was detected on 27 fur farms in Finland. In total, infections in silver and blue foxes, American minks and raccoon dogs were confirmed by RT-PCR. The pathological findings in the animals include widespread inflammatory lesions in the lungs, brain and liver, indicating efficient systemic dissemination of the virus. Phylogenetic analysis of Finnish A(H5N1) strains from fur animals and wild birds has identified three clusters (Finland I-III), and molecular analyses revealed emergence of mutations known to facilitate viral adaptation to mammals in the PB2 and NA proteins. Findings of avian influenza in fur animals were spatially and temporally connected with mass mortalities in wild birds. The mechanisms of virus transmission within and between farms have not been conclusively identified, but several different routes relating to limited biosecurity on the farms are implicated. The outbreak was managed in close collaboration between animal and human health authorities to mitigate and monitor the impact for both animal and human health.


Assuntos
Animais Selvagens , Charadriiformes , Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Filogenia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Finlândia/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Animais Selvagens/virologia , Charadriiformes/virologia , Surtos de Doenças/veterinária , Fazendas , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/epidemiologia , Raposas/virologia , Aves/virologia , Vison/virologia
2.
Euro Surveill ; 28(31)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535475

RESUMO

Since mid-July 2023, an outbreak caused by highly pathogenic avian influenza A(H5N1) virus clade 2.3.4.4b genotype BB is ongoing among farmed animals in South and Central Ostrobothnia, Finland. Infections in foxes, American minks and raccoon dogs have been confirmed on 20 farms. Genetic analysis suggests introductions from wild birds scavenging for food in farm areas. Investigations point to direct transmission between animals. While no human infections have been detected, control measures are being implemented to limit spread and human exposure.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Fazendas , Finlândia/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Vison , Filogenia
3.
Front Vet Sci ; 9: 854052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211546

RESUMO

[This corrects the article DOI: 10.3389/fvets.2021.688936.].

4.
Front Vet Sci ; 8: 688936, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395573

RESUMO

Animal disease control has a long tradition in Finland. The country is free of all EU-regulated cattle diseases of categories A and B. Infectious bovine rhinotracheitis, enzootic bovine leucosis, bovine viral diarrhea, bluetongue, bovine genital campylobacteriosis, and trichomoniasis do not currently exist in the country. The prevalence of paratuberculosis, Mycoplasma bovis, salmonella infection, and Q-fever is low. The geographic location, cold climate, low cattle density, and limited animal imports have contributed to the favorable disease situation. Besides screening for selected regulated diseases, the national disease-monitoring program includes periodic active monitoring of non-regulated diseases, which allows assessment of the need for new control measures. The detection of diseases through efficient passive surveillance also plays an important part in disease monitoring. The Finnish cattle population totals 850,000 animals kept on 9,300 cattle farms, with 62,000 suckler cows in 2,100 herds and 260,000 dairy cows in 6,300 herds. Animal Health ETT, an association owned by the dairy and meat industry, keeps a centralized cattle health care register. Animal Health ETT supervises cattle imports and trade within the country and runs voluntary control programs (CP) for selected diseases. Active cooperation between authorities, the cattle industry, Animal Health ETT, and herd health experts enables the efficient planning and implementation of CPs. CPs have been implemented for cattle diseases such as salmonella, Mycoplasma bovis, ringworm, and Streptococcus agalactiae. The CP for salmonellosis is compulsory and includes all Salmonella serotypes and all cattle types. It has achieved the goal of keeping the salmonella prevalence under 1% of cattle herds. CPs for M. bovis, ringworm, and S. agalactiae are on a voluntary basis and privately funded. The CP for Mycoplasma was designed in collaboration with national experts and has been implemented since 2013. The CP includes observation of clinical signs, nasal swab sampling from calves, and bulk tank milk and clinical mastitis samples for M. bovis. M. bovis-negative herds gradually achieve lower status levels for M. bovis infection. The general challenge facing voluntary CPs is getting farms to join the programs.

5.
Ecohealth ; 17(4): 512-522, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33326058

RESUMO

The northern European wild boar population has increased during the last decade. Highest wild boar numbers in Finland have been reported in the southeastern part near the Russian border. Wild boars may be infected with several human and animal pathogens. In this study, we investigated the presence of important foodborne pathogens in wild boars hunted in 2016 in Finland using serology, PCR and culturing. Seroprevalence of Salmonella (38%) and Yersinia (56%) infections was high in wild boars. Antibodies to hepatitis E virus, Toxoplasma gondii and Brucella were found in 18%, 9% and 9% of the wild boars, respectively. Trichinella antibodies were detected in 1% of the animals. We recorded no differences in the seroprevalence between males and females. However, Yersinia and T. gondii antibodies were detected significantly more often in adults than in young individuals. Listeria monocytogenes (48%) and stx-positive Escherichia coli (33%) determinants were frequently detected in the visceral organs (spleen and kidneys) by PCR. Yersinia pseudotuberculosis O:1 and L. monocytogenes 2a and 4b were identified by culturing from the PCR-positive samples. Brucella suis biovar 2 was isolated from visceral organs. No African swine fever, classical swine fever or Aujeszky's disease were detected in the wild boars. Our study shows that wild boars are important reservoirs of foodborne pathogens.


Assuntos
Doenças dos Suínos , Toxoplasma , Animais , Feminino , Masculino , Estudos Soroepidemiológicos , Sus scrofa , Suínos , Doenças dos Suínos/epidemiologia , Zoonoses/epidemiologia
7.
Acta Vet Scand ; 55: 69, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24047612

RESUMO

BACKGROUND: Swine influenza is an infectious acute respiratory disease of pigs caused by influenza A virus. We investigated the time of entry of swine influenza into the Finnish pig population. We also describe the molecular detection of two types of influenza A (H1N1) viruses in porcine samples submitted in 2009 and 2010.This retrospective study was based on three categories of samples: blood samples collected for disease monitoring from pigs at major slaughterhouses from 2007 to 2009; blood samples from pigs in farms with a special health status taken in 2008 and 2009; and diagnostic blood samples from pigs in farms with clinical signs of respiratory disease in 2008 and 2009. The blood samples were tested for influenza A antibodies with an antibody ELISA. Positive samples were further analyzed for H1N1, H3N2, and H1N2 antibodies with a hemagglutination inhibition test. Diagnostic samples for virus detection were subjected to influenza A M-gene-specific real-time RT-PCR and to pandemic influenza A H1N1-specific real-time RT-PCR. Positive samples were further analyzed with RT-PCRs designed for this purpose, and the PCR products were sequenced and sequences analyzed phylogenetically. RESULTS: In the blood samples from pigs in special health class farms producing replacement animals and in diagnostic blood samples, the first serologically positive samples originated from the period July-August 2008. In samples collected for disease monitoring, < 0.1%, 0% and 16% were positive for antibodies against influenza A H1N1 in the HI test in 2007, 2008, and 2009, respectively. Swine influenza A virus of avian-like H1N1 was first detected in diagnostic samples in February 2009. In 2009 and 2010, the avian-like H1N1 virus was detected on 12 and two farms, respectively. The pandemic H1N1 virus (A(H1N1)pdm09) was detected on one pig farm in 2009 and on two farms in 2010. CONCLUSIONS: Based on our study, swine influenza of avian-like H1N1 virus was introduced into the Finnish pig population in 2008 and A(H1N1)pdm09 virus in 2009. The source of avian-like H1N1 infection could not be determined. Cases of pandemic H1N1 in pigs coincided with the period when the A(H1N1)pdm09 virus was spread in humans in Finland.


Assuntos
Vírus da Influenza A/classificação , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/virologia , Animais , Finlândia/epidemiologia , Vírus da Influenza A/genética , Dados de Sequência Molecular , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/epidemiologia , Filogenia , Estudos Retrospectivos , Suínos , Doenças dos Suínos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA