Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Clin Exp Immunol ; 215(1): 15-26, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556361

RESUMO

The recruitment of T cells to tissues and their retention there are essential processes in the pathogenesis of many autoimmune and inflammatory diseases. The mechanisms regulating these processes have become better understood over the past three decades and are now recognized to involve temporally and spatially specific interactions between cell-adhesion molecules. These include integrins, which are heterodimeric molecules that mediate in-to-out and out-to-in signalling in T cells, other leukocytes, and most other cells of the body. Integrin signalling contributes to T-cell circulation through peripheral lymph nodes, immunological synapse stability and function, extravasation at the sites of inflammation, and T-cell retention at these sites. Greater understanding of the contribution of integrin signalling to the role of T cells in autoimmune and inflammatory diseases has focused much attention on the development of therapeutics that target T-cell integrins. This literature review describes the structure, activation, and function of integrins with respect to T cells, then discusses the use of integrin-targeting therapeutics in inflammatory bowel disease, multiple sclerosis, and psoriasis. Efficacy and safety data from clinical trials and post-marketing surveillance are presented for currently approved therapeutics, therapeutics that have been withdrawn from the market, and novel therapeutics currently in clinical trials. This literature review will inform the reader of the current means of targeting T-cell integrins in autoimmune and inflammatory diseases, as well as recent developments in the field.


Assuntos
Integrinas , Esclerose Múltipla , Humanos , Integrinas/química , Integrinas/fisiologia , Linfócitos T , Moléculas de Adesão Celular , Inflamação
2.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126685

RESUMO

Bile acids (BAs) have been implicated in the development of oesophagitis, Barrett's oesophagus and oesophageal adenocarcinoma (OAC). However, whether BAs promote cancer invasiveness has not been elucidated. We evaluated the role of BAs, in particular deoxycholic acid (DCA), in OAC invasion. Migration and invasiveness in untreated and BA-treated oesophageal SKGT-4 cancer cells were evaluated. Activity and expression of different matrix metalloproteinases (MMPs) were determined by zymography, ELISA, PCR and Western blot. Finally, human OAC tissues were stained for MMP-10 by immunohistochemistry. It was found that SKGT-4 cells incubated with low concentrations of DCA had a significant increase in invasion. In addition, MMP-10 mRNA and protein expression were also increased in the presence of DCA. MMP-10 was found to be highly expressed both in-vitro and in-vivo in neoplastic OAC cells relative to non-neoplastic squamous epithelial cells. Our results show that DCA promotes OAC invasion and MMP-10 overexpression. This study will advance our understanding of the pathophysiological mechanisms involved in human OAC and shows promise for the development of new therapeutic strategies.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , Ácido Desoxicólico/farmacologia , Neoplasias Esofágicas/patologia , Esôfago/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Metaloproteinase 10 da Matriz/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/enzimologia , Apoptose , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Colagogos e Coleréticos/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/enzimologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/enzimologia , Carcinoma de Células Escamosas do Esôfago/patologia , Esôfago/efeitos dos fármacos , Esôfago/enzimologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Invasividade Neoplásica , Prognóstico , Células Tumorais Cultivadas
3.
J Cell Mol Med ; 21(12): 3612-3625, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28941013

RESUMO

The fundamental mechanisms underlying erosive oesophagitis and subsequent development of Barrett's oesophagus (BO) are poorly understood. Here, we investigated the contribution of specific components of the gastric refluxate on adhesion molecules involved in epithelial barrier maintenance. Cell line models of squamous epithelium (HET-1A) and BO (QH) were used to examine the effects of bile acids on cell adhesion to extracellular matrix proteins (Collagen, laminin, vitronectin, fibronectin) and expression of integrin ligands (α3 , α4, α5 , α6 and αν ). Experimental findings were validated in human explant oesophageal biopsies, a rat model of gastroesophageal reflux disease (GORD) and in patient tissue microarrays. The bile acid deoxycholic acid (DCA) specifically reduced adhesion of HET-1A cells to vitronectin and reduced cell-surface expression of integrin-αν via effects on endocytic recycling processes. Increased expression of integrin-αv was observed in ulcerated tissue in a rat model of GORD and in oesophagitis and Barrett's intestinal metaplasia patient tissue compared to normal squamous epithelium. Increased expression of integrin-αν was observed in QH BO cells compared to HET-1A cells. QH cells were resistant to DCA-mediated loss of adhesion and reduction in cell-surface expression of integrin-αν . We demonstrated that a specific component of the gastric refluxate, DCA, affects the epithelial barrier through modulation of integrin αν expression, providing a novel mechanism for bile acid-mediated erosion of oesophageal squamous epithelium and promotion of BO. Strategies aimed at preventing bile acid-mediated erosion should be considered in the clinical management of patients with GORD.


Assuntos
Esôfago de Barrett/metabolismo , Ácido Desoxicólico/farmacologia , Células Epiteliais/efeitos dos fármacos , Esofagite/metabolismo , Refluxo Gastroesofágico/metabolismo , Integrina alfaV/genética , Animais , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Adesão Celular , Linhagem Celular , Colágeno/química , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Esofagite/genética , Esofagite/patologia , Fibronectinas/química , Refluxo Gastroesofágico/genética , Refluxo Gastroesofágico/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Integrina alfaV/metabolismo , Integrinas/genética , Integrinas/metabolismo , Laminina/química , Permeabilidade/efeitos dos fármacos , Transporte Proteico , Ratos , Análise Serial de Tecidos , Vitronectina/química
4.
Bioorg Med Chem Lett ; 26(21): 5369-5372, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27729186

RESUMO

Tauroursodeoxycholic acid (TUDCA) is a cytoprotective ER stress inhibitor and chemical chaperone. It has therapeutic potential in a wide array of diseases but a specific macromolecular target or molecular mechanism of action remains obscure. This Letter describes an effective new synthetic approach to taurine conjugation of bile acids which we used to prepare 3α-dansyl TUDCA (4) as a probe for TUDCA actions. As a model of ER stress we used the hepatocarcinoma cell line HUH7 and stimulation with either deoxycholic acid (DCA, 200µM) or tunicamycin (5µg/ml) and measured levels of Bip/GRP78, ATF4, CHOP and XBP1s/XBP1u. Compound 4 was more effective than UDCA at inhibiting ER stress markers and had similar effects to TUDCA. In a model of cholestasis using the cytotoxic DCA to induce apoptosis, pretreatment with 4 prevented cell death similarly to TUDCA whereas the unconjugated clinically used UDCA had no effect. 3α-Dansyl TUDCA (4) appears to be a suitable reporter for TUDCA effects on ER stress and related cytoprotective activity.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Corantes Fluorescentes/química , Ácido Tauroquenodesoxicólico/farmacologia , Animais , Chaperona BiP do Retículo Endoplasmático , Humanos
5.
J Biol Chem ; 289(28): 19420-34, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24872409

RESUMO

Rab GTPases control membrane traffic and receptor-mediated endocytosis. Within this context, Rab5a plays an important role in the spatial regulation of intracellular transport and signal transduction processes. Here, we report a previously uncharacterized role for Rab5a in the regulation of T-cell motility. We show that Rab5a physically associates with protein kinase Cϵ (PKCϵ) in migrating T-cells. After stimulation of T-cells through the integrin LFA-1 or the chemokine receptor CXCR4, Rab5a is phosphorylated on an N-terminal Thr-7 site by PKCϵ. Both Rab5a and PKCϵ dynamically interact at the centrosomal region of migrating cells, and PKCϵ-mediated phosphorylation on Thr-7 regulates Rab5a trafficking to the cell leading edge. Furthermore, we demonstrate that Rab5a Thr-7 phosphorylation is functionally necessary for Rac1 activation, actin rearrangement, and T-cell motility. We present a novel mechanism by which a PKCϵ-Rab5a-Rac1 axis regulates cytoskeleton remodeling and T-cell migration, both of which are central for the adaptive immune response.


Assuntos
Imunidade Adaptativa/fisiologia , Movimento Celular/fisiologia , Proteína Quinase C-épsilon/metabolismo , Linfócitos T/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Linhagem Celular , Citoesqueleto/genética , Citoesqueleto/metabolismo , Feminino , Humanos , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Masculino , Fosforilação/fisiologia , Proteína Quinase C-épsilon/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Linfócitos T/citologia , Proteínas rab5 de Ligação ao GTP/genética
6.
Br J Cancer ; 113(9): 1332-42, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26461057

RESUMO

BACKGROUND: The aetiology of Barrett's oesophagus (BO) and oesophageal cancer is poorly understood. We previously demonstrated that Golgi structure and function is altered in oesophageal cancer cells. A Golgi-associated protein, GOLPH2, was previously established as a tissue biomarker for BO. Cellular functions for GOLPH2 are currently unknown, therefore in this study we sought to investigate functional roles for this Golgi-associated protein in oesophageal disease. METHODS: Expression, intracellular localisation and secretion of GOLPH2 were identified by immunofluorescence, immunohistochemistry and western blot. GOLPH2 expression constructs and siRNA were used to identify cellular functions for GOLPH2. RESULTS: We demonstrate that the structure of the Golgi is fragmented and the intracellular localisation of GOLPH2 is altered in BO and oesophageal adenocarcinoma tissue. GOLPH2 is secreted by oesophageal cancer cells and GOLPH2 expression, cleavage and secretion facilitate cell migration and invasion. Furthermore, exposure of cells to DCA, a bile acid component of gastric refluxate and known tumour promoter for oesophageal cancer, causes disassembly of the Golgi structure into ministacks, resulting in cleavage and secretion of GOLPH2. CONCLUSIONS: This study demonstrates that GOLPH2 may be a useful tissue biomarker for oesophageal disease. We provide a novel mechanistic insight into the aetiology of oesophageal cancer and reveal novel functions for GOLPH2 in regulating tumour cell migration and invasion, important functions for the metastatic process in oesophageal cancer.


Assuntos
Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Ácidos e Sais Biliares/genética , Movimento Celular/genética , Proteínas de Membrana/genética , Invasividade Neoplásica/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Esôfago de Barrett/metabolismo , Ácidos e Sais Biliares/metabolismo , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Humanos , Invasividade Neoplásica/patologia
7.
Biochem Soc Trans ; 42(6): 1490-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25399559

RESUMO

Protein kinase C (PKC) is a family of ten serine/threonine kinases that have diverse roles in the signalling pathways regulating cellular proliferation, differentiation, apoptosis and immune responses. Elucidating roles for individual PKC isoforms in the immune responses of T-cells have long been a challenging prospect, because these cells are known to express nine of these isoforms. A variety of approaches including the use of knockout mice, overexpression of kinase-inactive mutants, cell-permeable peptides, pharmacological inhibitors and siRNAs have shown that PKCs regulate the production of inflammatory cytokines and the cytotoxic responses of various T-cell subsets. Central to the T-cell immune response is a requirement to migrate to various organs and tissues in search of pathogens and micro-organisms. T-cell migration is guided by specific sets of chemokines and integrin ligands that activate their cognate chemokine receptors and integrins on T-cells, resulting in remodelling of the cytoskeleton and the dynamic protrusive/contractile forces necessary for cell adhesion and motility. In the present article, we review the role of PKC in T-cell migration, with an emphasis on studies that have defined their roles in cytoskeletal remodelling, cell polarity and intracellular trafficking downstream of chemokine receptors and integrins.


Assuntos
Quimiotaxia de Leucócito , Citoesqueleto/metabolismo , Proteína Quinase C/metabolismo , Linfócitos T/citologia , Animais , Humanos
8.
Bioorg Med Chem ; 22(1): 256-68, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24332653

RESUMO

We have prepared a new panel of 23 BA derivatives of DCA, chenodeoxycholic acid (CDCA) and lithocholic acid (LCA) in order to study the effect of dual substitution with 3-azido and 24-amidation, features individually associated with cytotoxicity in our previous work. The effect of the compounds on cell viability of HT-1080 and Caco-2 was studied using the 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Compounds with high potency towards reduction of cell viability were further studied using flow cytometry in order to understand the mechanism of cell death. Several compounds were identified with low micromolar IC50 values for reducing cell viability in the Caco-2 and HT1080 cell lines, making them among the most potent BA apoptotic agents reported to date. There was no evidence of relationship between overall hydrophobicity and cytotoxicity supporting the idea that cell death induction by BAs may be structure-specific. Compounds derived from DCA caused cell death through apoptosis. There was some evidence of selectivity between the two cell lines studied which may be due to differing expression of CD95/FAS. The more toxic compounds increased ROS production in Caco-2 cells, and co-incubation with the antioxidant N-acetyl cysteine blunted pro-apoptotic effects. The properties these compounds suggest that there may be specific mechanism(s) mediating BA induced cell death. Compound 8 could be useful for investigating this phenomenon.


Assuntos
Ácidos e Sais Biliares/metabolismo , Ácido Quenodesoxicólico/metabolismo , Ácido Desoxicólico/metabolismo , Ácido Litocólico/metabolismo , Ácido Ursodesoxicólico/metabolismo , Apoptose , Ácidos e Sais Biliares/farmacologia , Células CACO-2 , Sobrevivência Celular , Ácido Quenodesoxicólico/farmacologia , Ácido Desoxicólico/farmacologia , Humanos , Ácido Litocólico/farmacologia , Ácido Ursodesoxicólico/farmacologia
9.
J Immunol ; 188(12): 6357-70, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22581862

RESUMO

Chemokines such as SDF-1α play a crucial role in orchestrating T lymphocyte polarity and migration via polymerization and reorganization of the F-actin cytoskeleton, but the role of actin-associated proteins in this process is not well characterized. In this study, we have investigated a role for L-plastin, a leukocyte-specific F-actin-bundling protein, in SDF-1α-stimulated human T lymphocyte polarization and migration. We found that L-plastin colocalized with F-actin at the leading edge of SDF-1α-stimulated T lymphocytes and was also phosphorylated at Ser(5), a site that when phosphorylated regulates the ability of L-plastin to bundle F-actin. L-plastin phosphorylation was sensitive to pharmacological inhibitors of protein kinase C (PKC), and several PKC isoforms colocalized with L-plastin at the leading edge of SDF-1α-stimulated lymphocytes. However, PKC ζ, an established regulator of cell polarity, was the only isoform that regulated L-plastin phosphorylation. Knockdown of L-plastin expression with small interfering RNAs demonstrated that this protein regulated the localization of F-actin at the leading edge of chemokine-stimulated cells and was also required for polarization, lamellipodia formation, and chemotaxis. Knockdown of L-plastin expression also impaired the Rac1 activation cycle and Akt phosphorylation in response to SDF-1α stimulation. Furthermore, L-plastin also regulated SDF-1α-mediated lymphocyte migration on the integrin ligand ICAM-1 by influencing velocity and persistence, but in a manner that was independent of LFA-1 integrin activation or adhesion. This study, therefore, demonstrates an important role for L-plastin and the signaling pathways that regulate its phosphorylation in response to chemokines and adds L-plastin to a growing list of proteins implicated in T lymphocyte polarity and migration.


Assuntos
Polaridade Celular/imunologia , Quimiotaxia de Leucócito/imunologia , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/metabolismo , Actinas/imunologia , Actinas/metabolismo , Western Blotting , Quimiocinas/imunologia , Quimiocinas/metabolismo , Citoesqueleto/imunologia , Citoesqueleto/metabolismo , Citometria de Fluxo , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/imunologia , Proteínas dos Microfilamentos/imunologia , Fosforilação , RNA Interferente Pequeno , Linfócitos T/imunologia
10.
Biochem J ; 455(2): 133-47, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24070422

RESUMO

The specificity of RNAi and its ability to silence 'undruggable' targets has made inhibition of gene expression in T-cells with siRNAs an attractive potential therapeutic strategy for the treatment of inflammatory disease, cancer and infection. However, delivery of siRNAs into primary T-cells represents a major hurdle to their use as potential therapeutic agents. Recent advances in siRNA delivery through the use of electroporation/nucleofection, viral vectors, peptides/proteins, nanoparticles, aptamers and other agents have now enabled efficient gene silencing in primary T-cells both in vitro and in vivo. Overcoming such barriers in siRNA delivery offers exciting new prospects for directly targeting T-cells systemically with siRNAs, or adoptively transferring T-cells back into patients following ex vivo manipulation with siRNAs. In the present review, we outline the challenges in delivering siRNAs into primary T-cells and discuss the mechanism and therapeutic opportunities of each delivery method. We emphasize studies that have exploited RNAi-mediated gene silencing in T-cells for the treatment of inflammatory disease, cancer and infection using mouse models. We also discuss the potential therapeutic benefits of manipulating T-cells using siRNAs for the treatment of human diseases.


Assuntos
Inflamação/terapia , Neoplasias/terapia , RNA Interferente Pequeno/genética , Animais , Inativação Gênica , Marcação de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Infecções/terapia , Inflamação/genética , Camundongos , Modelos Animais , Neoplasias/genética , Interferência de RNA , RNA Interferente Pequeno/química , Linfócitos T
11.
Nat Neurosci ; 27(3): 421-432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388736

RESUMO

Vascular disruption has been implicated in coronavirus disease 2019 (COVID-19) pathogenesis and may predispose to the neurological sequelae associated with long COVID, yet it is unclear how blood-brain barrier (BBB) function is affected in these conditions. Here we show that BBB disruption is evident during acute infection and in patients with long COVID with cognitive impairment, commonly referred to as brain fog. Using dynamic contrast-enhanced magnetic resonance imaging, we show BBB disruption in patients with long COVID-associated brain fog. Transcriptomic analysis of peripheral blood mononuclear cells revealed dysregulation of the coagulation system and a dampened adaptive immune response in individuals with brain fog. Accordingly, peripheral blood mononuclear cells showed increased adhesion to human brain endothelial cells in vitro, while exposure of brain endothelial cells to serum from patients with long COVID induced expression of inflammatory markers. Together, our data suggest that sustained systemic inflammation and persistent localized BBB dysfunction is a key feature of long COVID-associated brain fog.


Assuntos
COVID-19 , Disfunção Cognitiva , Humanos , Barreira Hematoencefálica/metabolismo , Síndrome de COVID-19 Pós-Aguda , Células Endoteliais/metabolismo , Leucócitos Mononucleares , COVID-19/complicações , Disfunção Cognitiva/patologia , Inflamação/patologia , Fadiga Mental/metabolismo , Fadiga Mental/patologia
12.
J Biol Chem ; 287(32): 27204-16, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22707713

RESUMO

The immunesuppressive cytokine TGF-ß plays crucial regulatory roles in the induction and maintenance of immunologic tolerance and prevention of immunopathologies. However, it remains unclear how circulating T-cells can escape from the quiescent state maintained by TGF-ß. Here, we report that the T-cell integrin leukocyte function-associated antigen-1 (LFA-1) interaction with its ligand intercellular adhesion molecule-1 (ICAM-1) induces a genetic signature associated with reduced TGF-ß responsiveness via up-regulation of SKI, E3 ubiquitin-protein ligase SMURF2, and SMAD7 (mothers against decapentaplegic homolog 7) genes and proteins. We confirmed that the expression of these TGF-ß inhibitory molecules was dependent on STAT3 and/or JNK activation. Increased expression of SMAD7 and SMURF2 in LFA-1/ICAM-1 cross-linked T-cells resulted in impaired TGF-ß-mediated phosphorylation of SMAD2 and suppression of IL-2 secretion. Expression of SKI caused resistance to TGF-ß-mediated suppression of IL-2, but SMAD2 phosphorylation was unaffected. Blocking LFA-1 by neutralizing antibody or specific knockdown of TGF-ß inhibitory molecules by siRNA substantially restored LFA-1/ICAM-1-mediated alteration in TGF-ß signaling. LFA-1/ICAM-1-stimulated human and mouse T-cells were refractory to TGF-ß-mediated induction of FOXP3(+) (forkhead box P3) and RORγt(+) (retinoic acid-related orphan nuclear receptor γt) Th17 differentiation. These mechanistic data suggest an important role for LFA-1/ICAM-1 interactions in immunoregulation concurrent with lymphocyte migration that may have implications at the level of local inflammatory response and for anti-LFA-1-based therapies.


Assuntos
Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
13.
Clin Immunol ; 147(1): 1-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23454274

RESUMO

Post-translational modification of proteins by deamidation or transamidation by tissue transglutaminase (tTG) has been suggested as a possible mechanism for the development of autoimmunity. Sequence analysis of protein kinase C delta (PKCδ) identified an amino acid motif that suggested the possibility that PKCδ was a glutamine substrate of tTG and MALDI-TOF analysis of synthesised peptides from PKCδ proved that this was the case. Polymerisation experiments using recombinant tTG and biotinylated hexapeptide substrate incorporation assays demonstrated that PKCδ is a substrate for tTG-mediated transamidation. Elevated levels of anti-PKCδ antibodies were detected in sera from patients with coeliac disease (p<0.0001) but not from patients with other autoimmune disorders. These data suggest that a subset of patients with coeliac disease produce autoantibodies against PKCδ and that this response may stem from a tTG-PKCδ substrate interaction.


Assuntos
Autoantígenos/imunologia , Doença Celíaca/imunologia , Proteínas de Ligação ao GTP/imunologia , Proteína Quinase C-delta/imunologia , Transglutaminases/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoanticorpos/sangue , Autoanticorpos/imunologia , Autoantígenos/sangue , Autoantígenos/metabolismo , Western Blotting , Doença Celíaca/metabolismo , Criança , Ensaio de Imunoadsorção Enzimática , Feminino , Proteínas de Ligação ao GTP/metabolismo , Glutamina/genética , Glutamina/imunologia , Glutamina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Processamento de Proteína Pós-Traducional/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Transglutaminases/metabolismo , Adulto Jovem
14.
Eur J Immunol ; 42(1): 17-26, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22125159

RESUMO

Hepatitis C virus (HCV) is a small, enveloped RNA virus and the number of HCV-infected individuals worldwide is estimated to be approximately 170 million. Most HCV infections persist, with up to 80% of all cases leading to chronic hepatitis associated with liver fibrosis, cirrhosis, and hepatocellular carcinoma. HCV-host interactions have a crucial role in viral survival, persistence, pathogenicity of infection, and disease progression. Maintenance of a vigorous, sustained cellular immune response recognizing multiple epitopes is essential for viral clearance. To escape immune surveillance, HCV alters its epitopes so that they are no-longer recognized by T cells and neutralizing antibodies, in addition to interfering with host cell cellular components and signaling pathways. The generation of escape variants is one of the most potent immune evasion strategies utilized by HCV. A large body of evidence suggests that single or multiple mutations within HLA-restricted epitopes contribute to viral immune escape and establishment of viral persistence. Further elucidation of the molecular mechanisms underlying immune escape will aid in the design of novel vaccines and therapeutics for the disease.


Assuntos
Hepacivirus/fisiologia , Hepatite C Crônica/imunologia , Hepatite C Crônica/virologia , Evasão da Resposta Imune/imunologia , Linfócitos T/imunologia , Epitopos/genética , Epitopos/imunologia , Variação Genética , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C Crônica/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune/genética , Imunidade Celular/imunologia , Linfócitos T/virologia
15.
Cell Commun Signal ; 11: 53, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23915285

RESUMO

This perspective summarises the first and long overdue RACK1 meeting held at the University of Limerick, Ireland, May 2013, in which RACK1's role in the immune system, the heart and the brain were discussed and its contribution to disease states such as cancer, cardiac hypertrophy and addiction were described. RACK1 is a scaffolding protein and a member of the WD repeat family of proteins. These proteins have a unique architectural assembly that facilitates protein anchoring and the stabilisation of protein activity. A large body of evidence is accumulating which is helping to define the versatile role of RACK1 in assembling and dismantling complex signaling pathways from the cell membrane to the nucleus in health and disease. In this commentary, we first provide a historical perspective on RACK1. We also address many of the pertinent and topical questions about this protein such as its role in transcription, epigenetics and translation, its cytoskeletal contribution and the merits of targeting RACK1 in disease.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Proteínas do Citoesqueleto/metabolismo , Epigenômica , Humanos , Biossíntese de Proteínas , Receptores de Quinase C Ativada , Transcrição Gênica
16.
Front Immunol ; 14: 1285357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090554

RESUMO

Bile acids are amphipathic molecules that are synthesized from cholesterol in the liver and facilitate intestinal absorption of lipids and nutrients. They are released into the small intestine upon ingestion of a meal where intestinal bacteria can modify primary into secondary bile acids. Bile acids are cytotoxic at high concentrations and have been associated with inflammatory diseases such as liver inflammation and Barrett's Oesophagus. Although bile acids induce pro-inflammatory signalling, their role in inducing innate immune cytokines and inflammation has not been fully explored to date. Here we demonstrate that the bile acids, deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) induce IL-1α and IL-1ß secretion in vitro in primed bone marrow derived dendritic cells (BMDCs). The secretion of IL-1ß was found not to require expression of NLRP3, ASC or caspase-1 activity; we can't rule out all inflammasomes. Furthermore, DCA and CDCA were shown to induce the recruitment of neutrophils and monocytes to the site of injection an intraperitoneal model of inflammation. This study further underlines a mechanistic role for bile acids in the pathogenesis of inflammatory diseases through stimulating the production of pro-inflammatory cytokines and recruitment of innate immune cells.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácidos e Sais Biliares , Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Inflamação , Células Dendríticas/metabolismo
17.
Front Immunol ; 14: 1170012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063871

RESUMO

Clinical outcomes from infection with SARS-CoV-2, the cause of the COVID-19 pandemic, are remarkably variable ranging from asymptomatic infection to severe pneumonia and death. One of the key drivers of this variability is differing trajectories in the immune response to SARS-CoV-2 infection. Many studies have noted markedly elevated cytokine levels in severe COVID-19, although results vary by cohort, cytokine studied and sensitivity of assay used. We assessed the immune response in acute COVID-19 by measuring 20 inflammatory markers in 118 unvaccinated patients with acute COVID-19 (median age: 70, IQR: 58-79 years; 48.3% female) recruited during the first year of the pandemic and 44 SARS-CoV-2 naïve healthy controls. Acute COVID-19 was associated with marked elevations in nearly all pro-inflammatory markers, whilst eleven markers (namely IL-1ß, IL-2, IL-6, IL-10, IL-18, IL-23, IL-33, TNF-α, IP-10, G-CSF and YKL-40) were associated with disease severity. We observed significant correlations between nearly all markers elevated in those infected with SARS-CoV-2 consistent with widespread immune dysregulation. Principal component analysis highlighted a pro-inflammatory cytokine signature (with strongest contributions from IL-1ß, IL-2, IL-6, IL-10, IL-33, G-CSF, TNF-α and IP-10) which was independently associated with severe COVID-19 (aOR: 1.40, 1.11-1.76, p=0.005), invasive mechanical ventilation (aOR: 1.61, 1.19-2.20, p=0.001) and mortality (aOR 1.57, 1.06-2.32, p = 0.02). Our findings demonstrate elevated cytokines and widespread immune dysregulation in severe COVID-19, adding further evidence for the role of a pro-inflammatory cytokine signature in severe and critical COVID-19.


Assuntos
COVID-19 , Humanos , Feminino , Idoso , Masculino , Citocinas , Interleucina-10 , Interleucina-33 , SARS-CoV-2 , Interleucina-6 , Fator de Necrose Tumoral alfa , Pandemias , Quimiocina CXCL10 , Interleucina-2 , Fator Estimulador de Colônias de Granulócitos
18.
Nat Commun ; 14(1): 3513, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316487

RESUMO

Excessive inflammation-associated coagulation is a feature of infectious diseases, occurring in such conditions as bacterial sepsis and COVID-19. It can lead to disseminated intravascular coagulation, one of the leading causes of mortality worldwide. Recently, type I interferon (IFN) signaling has been shown to be required for tissue factor (TF; gene name F3) release from macrophages, a critical initiator of coagulation, providing an important mechanistic link between innate immunity and coagulation. The mechanism of release involves type I IFN-induced caspase-11 which promotes macrophage pyroptosis. Here we find that F3 is a type I IFN-stimulated gene. Furthermore, F3 induction by lipopolysaccharide (LPS) is inhibited by the anti-inflammatory agents dimethyl fumarate (DMF) and 4-octyl itaconate (4-OI). Mechanistically, inhibition of F3 by DMF and 4-OI involves suppression of Ifnb1 expression. Additionally, they block type I IFN- and caspase-11-mediated macrophage pyroptosis, and subsequent TF release. Thereby, DMF and 4-OI inhibit TF-dependent thrombin generation. In vivo, DMF and 4-OI suppress TF-dependent thrombin generation, pulmonary thromboinflammation, and lethality induced by LPS, E. coli, and S. aureus, with 4-OI additionally attenuating inflammation-associated coagulation in a model of SARS-CoV-2 infection. Our results identify the clinically approved drug DMF and the pre-clinical tool compound 4-OI as anticoagulants that inhibit TF-mediated coagulopathy via inhibition of the macrophage type I IFN-TF axis.


Assuntos
COVID-19 , Interferon Tipo I , Trombose , Humanos , Anticoagulantes , Tromboplastina , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Escherichia coli , Inflamação , Lipopolissacarídeos , Staphylococcus aureus , Trombina , SARS-CoV-2 , Macrófagos , Caspases
19.
Glycobiology ; 22(5): 638-48, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22223758

RESUMO

It is generally accepted that esophageal adenocarcinoma arises from a Barrett's metaplastic lesion. Altered glycoprotein expression has been demonstrated in tissue from patients with Barrett's esophagus and esophageal cancer but the mechanisms regarding such changes are unknown. The bile acid deoxycholic acid (DCA) alters many cell signaling pathways and is implicated in esophageal cancer progression. We have demonstrated that DCA disrupts Golgi structure and affects protein secretion and glycosylation processes in cell lines derived from normal squamous epithelium (HET-1A) and Barrett's metaplastic epithelium (QH). Cell surface expression of glycans was identified using carbohydrate-specific probes (wheat germ agglutinate, conconavalin A, peanut agglutinin, lithocholic acid and Ulex europaeus agglutinin) that monitored N-glycosylation, O-glycosylation and core fucosylation in resting and DCA-treated cells. DCA altered intracellular localization and reduced cell surface expression of N-acetyl-D-glucosamine, α-methyl-mannopyranoside (Man/Glc) and fucose in both cell lines. Furthermore, DCA reduced the expression of epithelial growth factor receptor and E-cadherin in a manner analogous to treatment of cells with the N-glycan biosynthesis inhibitor tunicamycin. This is the first study to identify an altered Golgi structure and glycomic profile in response to DCA in esophageal epithelial cells, a process which could potentially contribute to metaplasia, dysplasia and cancer of the esophagus.


Assuntos
Ácido Desoxicólico/farmacologia , Esôfago/efeitos dos fármacos , Fucose/metabolismo , Esôfago de Barrett/metabolismo , Esôfago de Barrett/patologia , Caderinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Esôfago/citologia , Esôfago/metabolismo , Glicosilação , Complexo de Golgi/efeitos dos fármacos , Humanos
20.
Nat Methods ; 6(8): 569-75, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19644458

RESUMO

RNA interference (RNAi) has become a powerful technique for reverse genetics and drug discovery, and in both of these areas large-scale high-throughput RNAi screens are commonly performed. The statistical techniques used to analyze these screens are frequently borrowed directly from small-molecule screening; however, small-molecule and RNAi data characteristics differ in meaningful ways. We examine the similarities and differences between RNAi and small-molecule screens, highlighting particular characteristics of RNAi screen data that must be addressed during analysis. Additionally, we provide guidance on selection of analysis techniques in the context of a sample workflow.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Projetos de Pesquisa/estatística & dados numéricos , Bibliotecas de Moléculas Pequenas , Animais , Simulação por Computador , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA