Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Curr Issues Mol Biol ; 46(7): 7558-7576, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39057090

RESUMO

The confrontation between humans and bacteria is ongoing, with strategies for combating bacterial infections continually evolving. With the advancement of RNA sequencing technology, non-coding RNAs (ncRNAs) associated with bacterial infections have garnered significant attention. Recently, long ncRNAs (lncRNAs) have been identified as regulators of sterile inflammatory responses and cellular defense against live bacterial pathogens. They are involved in regulating host antimicrobial immunity in both the nucleus and cytoplasm. Increasing evidence indicates that lncRNAs are critical for the intricate interactions between host and pathogen during bacterial infections. This paper emphatically elaborates on the potential applications of lncRNAs in clinical hallmarks, cellular damage, immunity, virulence, and drug resistance in bacterial infections in greater detail. Additionally, we discuss the challenges and limitations of studying lncRNAs in the context of bacterial infections and highlight clear directions for this promising field.

2.
Mol Biol Rep ; 51(1): 466, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551745

RESUMO

Tuberculosis (TB), which caused by Mycobacterium tuberculosis, is the leading cause of death from a single infectious agent and continues to be a major public health burden for the global community. Despite being the only globally licenced prophylactic vaccine, Bacillus Calmette-Guérin (BCG) has multiple deficiencies, and effective diagnostic and therapeutic options are limited. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is an adaptive immune system that is found in bacteria and has great potential for the development of novel antituberculosis drugs and vaccines. In addition, CRISPR-Cas is currently recognized as a prospective tool for the development of therapies for TB infection with potential diagnostic and therapeutic value, and CRISPR-Cas may become a viable tool for eliminating TB in the future. Herein, we systematically summarize the current applications of CRISPR-Cas-based technology for TB detection and its potential roles in drug discovery and vaccine development.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Sistemas CRISPR-Cas/genética , Tuberculose/prevenção & controle , Tuberculose/microbiologia , Mycobacterium tuberculosis/genética , Descoberta de Drogas , Desenvolvimento de Vacinas
3.
Environ Res ; 259: 119516, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38950813

RESUMO

The rapid increase of mcr-positive Klebsiella pneumoniae (K. pneumoniae) has received considerable attention and poses a major public health concern. Here, we systematically analyzed the global distribution of mcr-positive K. pneumoniae isolates based on published articles as well as publicly available genomes. Combining strain information from 78 articles and 673 K. pneumoniae genomes, a total of 1000 mcr-positive K. pneumoniae isolates were identified. We found that mcr-positive K. pneumoniae has disseminated widely worldwide, especially in Asia, with a higher diversity of sequence types (STs). These isolates were disseminated in 57 countries and were associated with 12 different hosts. Most of the isolates were found in China and were isolated from human sources. Moreover, MLST analysis showed that ST15 and ST11 accounted for the majority of mcr-positive K. pneumoniae, which deserve sustained attention in further surveillance programs. mcr-1 and mcr-9 were the dominant mcr variants in mcr-positive K. pneumoniae. Furthermore, a Genome-wide association study (GWAS) demonstrated that mcr-1- and mcr-9-producing genomes exhibited different antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), thereby indicating a distinct evolutionary path. Notably, the phylogenetic analysis suggested that certain mcr-positive K. pneumoniae genomes from various geographical areas and hosts harbored a high degree of genetic similarities (<20 SNPs), suggesting frequent cross-region and cross-host clonal transmission. Overall, our results emphasize the significance of monitoring and exploring the transmission and evolution of mcr-positive K. pneumoniae in the context of "One health".


Assuntos
Variação Genética , Infecções por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Humanos , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Filogenia , Estudo de Associação Genômica Ampla , Genoma Bacteriano
4.
World J Microbiol Biotechnol ; 40(8): 244, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38871847

RESUMO

In recent years, the emergence of blaOXA-encoding Escherichia coli (E. coli) poses a significant threat to human health. Here, we systematically analyzed the global geographic distribution and genetic characteristics of 328 blaOXA-positive E. coli plasmids based on NCBI database. Twelve blaOXA variants have been discovered, with blaOXA-1 (57.93%) being the most common, followed by blaOXA-10 (11.28%) and blaOXA-48 (10.67%). Our results suggested that blaOXA-positive E. coli plasmids were widespread in 40 countries, mainly in China, the United States, and Spain. MLST analysis showed that ST2, ST43, and ST471 were the top three host STs for blaOXA-positive plasmids, deserving continuing attention in future surveillance program. Network analysis revealed a correlation between different blaOXA variants and specific antibiotic resistance genes, such as blaOXA-1 and aac (6')-Ib-cr (95.79%), blaOXA-181 and qnrS1 (87.88%). The frequent detection of aminoglycosides-, carbapenems- and even colistin-related resistance genes in blaOXA-positive plasmids highlights their multidrug-resistant potential. Additionally, blaOXA-positive plasmids were further divided into eight clades, clade I-VIII. Each clade displayed specificity in replicon types and conjugative transfer elements. Different blaOXA variants were associated with specific plasmid lineages, such as blaOXA-1 and IncFII plasmids in clade II, and blaOXA-48 and IncL plasmids in clade I. Overall, our findings provide a comprehensive insight into blaOXA-positive plasmids in E. coli, highlighting the role of plasmids in blaOXA dissemination in E. coli.


Assuntos
Antibacterianos , Escherichia coli , Tipagem de Sequências Multilocus , Plasmídeos , beta-Lactamases , Escherichia coli/genética , Escherichia coli/enzimologia , Plasmídeos/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética , Humanos , Infecções por Escherichia coli/microbiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética , China , Farmacorresistência Bacteriana/genética , Filogenia
5.
J Infect Dis ; 228(6): 800-809, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392466

RESUMO

Staphylococcus aureus (S. aureus) is an important pathogen for humans and can cause a wide range of diseases, from mild skin infections, severe osteomyelitis to fatal pneumonia, sepsis, and septicemia. The mouse models have greatly facilitated the development of S. aureus studies. However, due to the substantial differences in immune system between mice and humans, the conventional mouse studies are not predictive of success in humans, in which case humanized mice may overcome this limitation to some extent. Humanized mice can be used to study the human-specific virulence factors produced by S. aureus and the mechanisms by which S. aureus interacts with humans. This review outlined the latest advances in humanized mouse models used in S. aureus studies.


Assuntos
Osteomielite , Sepse , Infecções Estafilocócicas , Camundongos , Humanos , Animais , Staphylococcus aureus , Fatores de Virulência , Modelos Animais de Doenças
6.
Antimicrob Agents Chemother ; 67(3): e0118922, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36790185

RESUMO

CRISPR systems are often encoded by many prokaryotes as adaptive defense against mobile genetic elements (MGEs), but several MGEs also recruit CRISPR components to perform additional biological functions. Type IV-A systems are identified in Klebsiella plasmids, yet the distribution, characterization, and role of these plasmids carrying CRISPR systems in the whole Klebsiella genus remain unclear. Here, we performed large-scale comparative analysis of these plasmids using publicly available plasmid genomes. CRISPR-harboring plasmids were mainly distributed in Klebsiella pneumoniae (9.09%), covering 19.23% of sequence types, but sparse in Klebsiella species outside Klebsiella pneumoniae (3.92%). Plasmid genome comparison reiterated that these plasmids often carried the cointegrates of IncFIB and IncHI1B replicons, occasionally linked to other replicons, such as IncFIA, IncFII, IncR, IncQ, and IncU. Comparative genome analysis showed that CRISPR-carrying Klebsiella plasmids shared a conserved pNDM-MAR-like conjugation module as their backbones and served as an important vector for the accretion of antibiotic resistance genes (ARGs) and even virulence genes (VGs). Moreover, compared with CRISPR-negative IncFIB/IncHIB plasmids, CRISPR-positive IncFIB/IncHIB plasmids displayed high divergences in terms of ARGs, VGs, GC content, plasmid length, and backbone structures, suggesting their divergent evolutionary paths. The network analysis revealed that CRISPR-positive plasmids yielded fierce competitions with other plasmid types, especially conjugative plasmids, thereby affecting the dynamics of plasmid transmission. Overall, our study provides valuable insights into the role of CRISPR-positive plasmids in the spread of ARGs and VGs in Klebsiella genus.


Assuntos
Infecções por Klebsiella , Klebsiella , Humanos , Klebsiella/genética , Virulência/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , beta-Lactamases/genética , Plasmídeos/genética , Genômica , Klebsiella pneumoniae , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/genética , Resistência Microbiana a Medicamentos , Fatores de Virulência/genética , Antibacterianos/farmacologia
7.
Mol Genet Genomics ; 298(6): 1407-1417, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37684555

RESUMO

CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) system is a crucial adaptive immune system for bacteria to resist foreign DNA infection. In this study, we investigated the prevalence and diversity of CRISPR/Cas systems in 175 Klebsiella oxytoca (K. oxytoca) strains. Specifically, 58.86% (103/175) of these strains possessed at least one confirmed CRISPR locus. Two CRISPR/Cas system types, I-F and IV-A3, were identified in 69 strains. Type I-F system was the most prevalent in this species, which correlated well with MLST. Differently, type IV-A3 system was randomly distributed. Moreover, the type IV-A3 system was separated into two subgroups, with subgroup-specific cas genes and repeat sequences. In addition, spacer origin analysis revealed that approximately one-fifth of type I-F spacers and one-third of type IV-A3 spacers had a significant match to MGEs. The phage tail tape measure protein and conjunctive transfer system protein were important targets of type I-F and IV-A3 systems in K. oxytoca, respectively. PAM sequences were inferred to be 5'-NCC-3' for type I-F, 5'-AAG-3' for subgroup IV-A3-a, and 5'-AAN-3' for subgroup IV-A3-b. Collectively, our findings will shed light on the prevalence, diversity, and functional effects of the CRISPR/Cas system in K. oxytoca.


Assuntos
Sistemas CRISPR-Cas , Klebsiella oxytoca , Klebsiella oxytoca/genética , Sistemas CRISPR-Cas/genética , Tipagem de Sequências Multilocus
8.
J Med Virol ; 95(7): e28939, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37409616

RESUMO

Some children infected with hand, foot, and mouth disease (HFMD) caused by enterovirus 71 (EV71) progressed to severe disease with various neurological complications in the short term, with a poor prognosis and high mortality. Studies had revealed that RNA N6 -methyladenosine (m6 A) modification had a significant impact on EV71 replication, but it was unknown how m6 A modification regulated the host cell's innate immune response brought on by EV71 infection. We used MeRIP-seq (methylation RNA immunoprecipitation sequencing), RNA-seq (RNA sequencing), cell transfection, and other techniques. MeRIP-seq and RNA-seq results showed the m6 A methylation modification map of control and EV71-infected groups of RD cells. And multilevel validation indicated that decreased expression of demethylase FTO (fat mass and obesity-associated protein) was responsible for the elevated total m6 A modification levels in EV71-infected RD cells and that thioredoxin interacting protein (TXNIP) may be a target gene for demethylase FTO action. Further functional experiments showed that demethylase knockdown of FTO promoted TXNIP expression, activation of NLRP3 inflammasome and promoted the release of proinflammatory factors in vitro, and the opposite result occurred with demethylase FTO overexpression. And further tested in an animal model of EV71 infection in vitro, with results consistent with in vitro. Our findings elucidated that depletion of the demethylase FTO during EV71 infection increased the m6 A modification level of TXNIP mRNA 3' untranslated region (UTR), enhancing mRNA stability, and promoting TXNIP expression. Consequently, the NLRP3 inflammasome was stimulated, leading to the release of proinflammatory factors and facilitating HFMD progression.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Enterovirus/genética , Enterovirus Humano A/genética , Doença de Mão, Pé e Boca/genética , Inflamassomos/genética , Metilação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , RNA , Humanos
9.
Lett Appl Microbiol ; 76(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37715312

RESUMO

Klebsiella variicola, an emerging human pathogen, poses a threat to public health. The horizontal gene transfer (HGT) of plasmids is an important driver of the emergence of multiple antibiotic-resistant K. variicola. Clustered regularly interspersed short palindromic repeats (CRISPR) coupled with CRISPR-associated genes (CRISPR/Cas) constitute an adaptive immune system in bacteria, and can provide acquired immunity against HGT. However, the information about the CRISPR/Cas system in K. variicola is still limited. In this study, 487 genomes of K. variicola obtained from the National Center for Biotechnology Information database were used to analyze the characteristics of CRISPR/Cas systems. Approximately 21.56% of genomes (105/487) harbor at least one confirmed CRISPR array. Three types of CRISPR/Cas systems, namely the type I-E, I-E*, and IV-A systems, were identified among 105 strains. Spacer origin analysis further revealed that approximately one-third of spacers significantly match plasmids or phages, which demonstrates the implication of CRISPR/Cas systems in controlling HGT. Moreover, spacers in K. variicola tend to target mobile genetic elements from K. pneumoniae. This finding provides new evidence of the interaction of K. variicola and K. pneumoniae during their evolution. Collectively, our results provide valuable insights into the role of CRISPR/Cas systems in K. variicola.


Assuntos
Bacteriófagos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Klebsiella/genética , Plasmídeos/genética , Bacteriófagos/genética , Klebsiella pneumoniae/genética
10.
Psychol Health Med ; 28(5): 1336-1346, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36334084

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is a public health emergency of international concern. However, its stress on the mental health of young to middle-aged adults is largely unexplored. This study aimed to evaluate the mental health difficulties during the resurgent phase of COVID-19 among young to middle-aged adults in China. There were 1,478 participants with a median age of 26 years (IQR, 23 - 30), including 535 males (36.2%). The prevalence of anxiety, depression, and insomnia were 8.6%, 11.4%, and 13.7%, respectively. Participants aged 29 - 59 years (OR, 95% CI: 2.46, 1.23 - 4.91) and females (2.49, 1.55 - 4.01) had a higher risk of anxiety. Education status, worried level about the current COVID-19, and the level of COVID-19's impact on life were significantly associated with the prevalence of anxiety. Besides, the level of COVID-19's impact on life was positively related to the prevalence of depression and insomnia. Our study provided novel evidence of psychological difficulties among young to middle-aged adults during the resurgent stage of the COVID-19 epidemic. Psychological intervention should be continuously implemented to prevent long-term psychological comorbidities during the COVID-19 epidemic.


Assuntos
COVID-19 , Distúrbios do Início e da Manutenção do Sono , Pessoa de Meia-Idade , Masculino , Feminino , Adulto , Humanos , Adulto Jovem , Estudos Transversais , Depressão/psicologia , SARS-CoV-2 , Inquéritos e Questionários , Ansiedade/psicologia , China/epidemiologia
11.
Arch Microbiol ; 203(6): 3235-3243, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33837440

RESUMO

The CRISPR-Cas system is widely distributed in prokaryotes and plays an important role in the adaptive immunity of bacteria and archaea. Bifidobacterium is an important component of the intestinal flora of humans and animals, and some species of this bacterium can be employed as food additives. However, the Bifidobacterium CRISPR-Cas system has not been fully elucidated to date. In this study, the genomes of 110 strains of Bifidobacterium were employed to research the diversity of the type I-U system. The 110 strains were divided into five groups according to the genes adjacent to the CRISPR locus, including group A, B, C, D and E. Strains in the intergroup had unique species classifications and MLST types. An evolutionary tree was constructed based on the conserved cas4/cas1 fusion gene. The results showed that group A had a different evolutionary branch compared with the other groups and had a relatively low spacer number. Notably, group B, C and E had exhibited ABC transporter regulators in the genes adjacent to the CRISPR locus. ABC transporters play important roles in the exocytosis of many antibiotics and are involved in horizontal gene transfer. This mechanism may have promoted the evolution of Bifidobacterium and the horizontal gene transfer of the type I-U system, which may have promoted the generation of system diversity. In summary, our results help to elucidate the role of the type I-U system in the evolution of Bifidobacterium.


Assuntos
Bifidobacterium , Sistemas CRISPR-Cas , Variação Genética , Bifidobacterium/genética , Sistemas CRISPR-Cas/genética , Transferência Genética Horizontal , Humanos , Tipagem de Sequências Multilocus
12.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063629

RESUMO

Hepatitis B remains a major global public health challenge, with particularly high prevalence in medically disadvantaged western Pacific and African regions. Although clinically available technologies for the qPCR detection of HBV are well established, research on point-of-care testing has not progressed substantially. The development of a rapid, accurate point-of-care test is essential for the prevention and control of hepatitis B in medically disadvantaged rural areas. The development of the CRISPR/Cas system in nucleic acid detection has allowed for pathogen point-of-care detection. Here, we developed a rapid and accurate point-of-care assay for HBV based on LAMP-Cas12a. It innovatively solves the problem of point-of-care testing in 10 min, particularly the problem of sample nucleic acid extraction. Based on LAMP-Cas12a, visualization of the assay results is presented by both a fluorescent readout and by lateral flow test strips. The lateral flow test strip technology can achieve results visible to the naked eye, while fluorescence readout can achieve real-time high-sensitivity detection. The fluorescent readout-based Cas12a assay can achieve HBV detection with a limit of detection of 1 copy/µL within 13 min, while the lateral flow test strip technique only takes 20 min. In the evaluation of 73 clinical samples, the sensitivity and specificity of both the fluorescence readout and lateral flow test strip method were 100%, and the results of the assay were fully comparable to qPCR. The LAMP-Cas12a-based HBV assay relies on minimal equipment to provide rapid, accurate test results and low costs, providing significant practical value for point-of-care HBV detection.


Assuntos
Técnicas Biossensoriais , Vírus da Hepatite B/isolamento & purificação , Hepatite B/diagnóstico , Testes Imediatos , Sistemas CRISPR-Cas/genética , Fluorescência , Hepatite B/genética , Hepatite B/virologia , Vírus da Hepatite B/patogenicidade , Humanos , Sistemas Automatizados de Assistência Junto ao Leito
13.
Mol Genet Genomics ; 294(5): 1263-1275, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31134321

RESUMO

Clostridium perfringens is an important pathogen of human and livestock infections, posing a threat to health. The horizontal gene transfer (HGT) of plasmids that carry toxin-related genes is involved in C. perfringens pathogenicity. The CRISPR/Cas system, which has been identified in a wide range of prokaryotes, provides acquired immunity against HGT. However, information about the CRISPR/Cas system in Clostridium perfringens is still limited. In this study, 111 C. perfringens strains with publicly available genomes were used to analyze the occurrence and diversity of CRISPR/Cas system and evaluate the potential of CRISPR-based genotyping in this multi-host pathogen. A total of 59 out of the 111 genomes harbored at least one confirmed CRISPR array. Four CRISPR/Cas system subtypes, including subtypes IB, IIA, IIC, and IIID systems, were identified in 32 strains. Subtype IB system was the most prevalent in this species, which was subdivided into four subgroups displaying subgroup specificity in terms of cas gene content, repeat sequence content, and PAM. We showed that the CRISPR spacer polymorphism can be used for evolutionary studies, and that it can provide discriminatory power for typing strains. Nevertheless, the application of this approach was largely limited to strains that contain the CRISPR/Cas system. Spacer origin analysis revealed that approximately one-fifth of spacers showed significant matches to plasmids and phages, thereby suggesting the implication of CRISPR/Cas systems in controlling HGT. Collectively, our results provide new insights into the diversity and evolution of CRISPR/Cas system in C. perfringens.


Assuntos
Sistemas CRISPR-Cas/genética , Clostridium perfringens/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Bacteriófagos/genética , Biologia Computacional/métodos , Transferência Genética Horizontal/genética , Genoma Bacteriano/genética , Filogenia , Plasmídeos/genética , Polimorfismo Genético/genética
14.
Pathogens ; 13(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38921732

RESUMO

Staphylococcus aureus (S. aureus) is a major human pathogen and can cause a wide range of diseases, including pneumonia, osteomyelitis, skin and soft tissue infections (SSTIs), endocarditis, mastitis, bacteremia, and so forth. Rats have been widely used in the field of infectious diseases due to their unique advantages, and the models of S. aureus infections have played a pivotal role in elucidating their pathogenic mechanisms and the effectiveness of therapeutic agents. This review outlined the current application of rat models in S. aureus infections and future prospects for rat models in infectious diseases caused by S. aureus.

15.
Int J Antimicrob Agents ; 64(2): 107225, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810941

RESUMO

blaNDM-1 and blaKPC-2 are responsible for the global increase in carbapenem-resistant Klebsiella pneumoniae, posing a great challenge to public health. However, the impact of phylogenetic factors on the dissemination of blaNDM-1 and blaKPC-2 is not yet fully understood. This study established a global dataset of 4051 blaNDM-1+ and 10,223 blaKPC-2+ K. pneumoniae genomes, and compared their transmission modes on a global scale. The results showed that blaNDM-1+ K. pneumoniae genomes exhibited a broader geographical distribution and higher sequence type (ST) richness than blaKPC-2+ genomes, indicating higher transmissibility of the blaNDM-1 gene. Furthermore, blaNDM-1+ genomes displayed significant differences in ST lineage, antibiotic resistance gene composition, virulence gene composition and genetic environments compared with blaKPC-2+ genomes, suggesting distinct dissemination mechanisms. blaNDM-1+ genomes were predominantly associated with ST147 and ST16, whereas blaKPC-2+ genomes were mainly found in ST11 and ST258. Significantly different accessory genes were identified between blaNDM-1+ and blaKPC-2+ genomes. The preference for blaKPC-2 distribution across certain countries, ST lineages and genetic environments underscores vertical spread as the primary mechanism driving the expansion of blaKPC-2. In contrast, blaNDM-1+ genomes did not display such a strong preference, confirming that the dissemination of blaNDM-1 mainly depends on horizontal gene transfer. Overall, this study demonstrates different phylogenetic drivers for the dissemination of blaNDM-1 and blaKPC-2, providing new insights into their global transmission dynamics.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Filogenia , beta-Lactamases , beta-Lactamases/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/classificação , Infecções por Klebsiella/transmissão , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Humanos , Genoma Bacteriano , Antibacterianos/farmacologia , Fatores de Virulência/genética , Testes de Sensibilidade Microbiana , Carbapenêmicos/farmacologia
16.
Heliyon ; 10(14): e34383, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108851

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated nuclease (Cas) system has been proven to play an irreplaceable role in bacteria immunity activity against exogenous genetic elements. In recent years, this system has emerged as a valid gene engineering method and could be used to detect and treat various microorganisms such as bacteria and viruses, etc. Staphylococcus aureus, as a Gram-positive, opportunistic human and animal pathogen, can cause a variety of diseases greatly threatening human health. Here, we mainly reviewed the applications of the CRISPR-Cas system in Staphylococcus aureus infections in detail. Furthermore, the prospects and drawbacks of the CRISPR-Cas system were also discussed.

17.
Int J Antimicrob Agents ; 63(2): 107070, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141834

RESUMO

Bacillary dysentery caused by Shigella spp. is a significant concern for human health. Small non-coding RNA (sRNA) plays a crucial role in regulating antibiotic resistance and virulence in Shigella spp. However, the specific mechanisms behind this phenomenon are still not fully understood. This study discovered two sRNAs (sRNA1039 and sRNA1600) that may be involved in bacterial resistance and virulence. By constructing deletion mutants (WT/ΔSR1039 and WT/ΔSR1600), this study found that the WT/ΔSR1039 mutants caused a two-fold increase in sensitivity to ampicillin, gentamicin and cefuroxime, and the WT/ΔSR1600 mutants caused a two-fold increase in sensitivity to cefuroxime. Furthermore, the WT/ΔSR1600 mutants caused a decrease in the adhesion and invasion of bacteria to HeLa cells (P<0.01), and changed the oxidative stress level of bacteria to reduce their survival rate (P<0.001). Subsequently, this study explored the molecular mechanisms by which sRNA1039 and sRNA1600 regulate antibiotic resistance and virulence. The deletion of sRNA1039 accelerated the degradation of target gene cfa mRNA and reduced its expression, thereby regulating the expression of pore protein gene ompD indirectly and negatively to increase bacterial sensitivity to ampicillin, gentamicin and cefuroxime. The inactivation of sRNA1600 reduced the formation of persister cells to reduce resistance to cefuroxime, and reduced the expression of type-III-secretion-system-related genes to reduce bacterial virulence by reducing the expression of target gene tomB. These results provide new insights into Hfq-sRNA-mRNA regulation of the resistance and virulence network of Shigella sonnei, which could potentially promote the development of more effective treatment strategies.


Assuntos
Disenteria Bacilar , Pequeno RNA não Traduzido , Shigella , Humanos , Shigella sonnei/genética , Virulência/genética , Células HeLa , Cefuroxima/metabolismo , Shigella flexneri/genética , Disenteria Bacilar/microbiologia , Ampicilina/farmacologia , Ampicilina/metabolismo , Resistência Microbiana a Medicamentos , Gentamicinas , RNA Mensageiro , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
18.
Biomed Rep ; 21(5): 161, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39268408

RESUMO

Nanoparticles (NPs) are one of the promising strategies to deal with bacterial infections. As the main subset of NPs, metal and metal oxide NPs show destructive power against bacteria by releasing metal ions, direct contact of cell membranes and antibiotic delivery. Recently, a number of researchers have focused on the antibacterial activity of zinc oxide nanoparticles (ZnO NPs) against Staphylococcus aureus (S. aureus). Currently, there is a lack of a comprehensive review on ZnO NPs against S. aureus. Therefore, in this review, the antibacterial activity against S. aureus of ZnO NPs made by various synthetic methods was summarized, particularly the green synthetic ZnO NPs. The synergistic antibacterial effect against S. aureus of ZnO NPs with antibiotics was also summarized. Furthermore, the present review also emphasized the enhanced activities against S. aureus of ZnO nanocomposites, nano-hybrids and functional ZnO NPs.

19.
Sci Total Environ ; 950: 175357, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127203

RESUMO

Klebsiella pneumoniae (Kp) is a human symbiotic opportunistic pathogen capable of causing severe hospital-based infections and community-acquired infections. The problem of antimicrobial resistance (AMR) has become increasing serious over time, posing a major threat to socio-economic and human development. In this study, we explored the global trend of AMR in 1786 strains of Kp isolated between 1982 and 2023. The number of antibiotic resistance genes (ARGs) in Kp increased significantly from 24.29 ± 5.44 to 32.42 ± 8.52 over time. Mobile genetic elements (MGEs) were responsible for the ARGs horizontal transfer of Kp strains. The results of structural equation modeling (SEM) indicated a strong association between the human development index and the increase of antibiotic consumption, which indirectly affected the occurrence and development of antibiotic resistance in Kp. The results of Generalized Linear Models (GLM) indicated that the influence of environmental factors such as temperature on the development of Kp resistance could not be ignored. Overall, this study monitored the longitudinal trend of antimicrobial resistance in Kp, explored the factors influencing antibiotic resistance, and provided insights for mitigating the threat of antimicrobial resistance.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Klebsiella pneumoniae , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia
20.
Med Int (Lond) ; 4(6): 67, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268247

RESUMO

As a notorious bacterial pathogen, Staphylococcus aureus (S. aureus) can readily induce infections in the community and hospital, causing significant morbidity and mortality. With the extensive rise of multiple resistance, conventional antibiotic therapy has rapidly become ineffective for related infections. Resveratrol is a naturally occurring polyphenolic substance that has been demonstrated to have effective antimicrobial activity against S. aureus. Resveratrol at sub-inhibitory doses can suppress the expression of virulence factors, contributing to attenuated biofilm formation, interference with quorum sensing and the inhibition of the production of toxins. As a promising efflux pump inhibitor, resveratrol enhances antibiotic susceptibility to a certain extent. In conjunction with conventional antibiotics, resveratrol displays unique synergistic effects with norfloxacin and aminoglycoside on S. aureus, yet antagonizes the lethal effects of daptomycin, oxacillin, moxifloxacin and levofloxacin. Nevertheless, given the low oral bioavailability of resveratrol, advanced formulations need to be developed to delay the rapid metabolism conversion to low or inactive conjugates. The present review discusses the antibacterial properties of resveratrol against S. aureus, in an aim to provide in-depth insight for researchers to address the challenges of antimicrobial resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA