Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6677, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795228

RESUMO

Soft-elasticity in monodomain liquid crystal elastomers (LCEs) is promising for impact-absorbing applications where strain energy is ideally absorbed at constant stress. Conventionally, compressive and impact studies on LCEs have not been performed given the notorious difficulty synthesizing sufficiently large monodomain devices. Here, we use direct-ink writing 3D printing to fabricate bulk (>cm3) monodomain LCE devices and study their compressive soft-elasticity over 8 decades of strain rate. At quasi-static rates, the monodomain soft-elastic LCE dissipated 45% of strain energy while comparator materials dissipated less than 20%. At strain rates up to 3000 s-1, our soft-elastic monodomain LCE consistently performed closest to an ideal-impact absorber. Drop testing reveals soft-elasticity as a likely mechanism for effectively reducing the severity of impacts - with soft elastic LCEs offering a Gadd Severity Index 40% lower than a comparable isotropic elastomer. Lastly, we demonstrate tailoring deformation and buckling behavior in monodomain LCEs via the printed director orientation.

2.
Nano Lett ; 5(10): 2070-3, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16218739

RESUMO

We report the two-dimensional alignment of semiconductor islands using rudimentary metal patterning to control nucleation and growth. In the Ge on Si system, a square array of submicron Au dots on the Si (001) surface induces the assembly of deposited Ge adatoms into an extensive island lattice. Remarkably, these highly ordered Ge islands form between the patterned Au dots and are characterized by a unique truncated pyramidal shape. A model based on patterned diffusion barriers explains the observed ordering and establishes general criteria for the broader applicability of such a directed assembly process to quantum dot ordering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA