Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37104737

RESUMO

MOTIVATION: Testing the association between multiple phenotypes with a set of genetic variants simultaneously, rather than analyzing one trait at a time, is receiving increasing attention for its high statistical power and easy explanation on pleiotropic effects. The kernel-based association test (KAT), being free of data dimensions and structures, has proven to be a good alternative method for genetic association analysis with multiple phenotypes. However, KAT suffers from substantial power loss when multiple phenotypes have moderate to strong correlations. To handle this issue, we propose a maximum KAT (MaxKAT) and suggest using the generalized extreme value distribution to calculate its statistical significance under the null hypothesis. RESULTS: We show that MaxKAT reduces computational intensity greatly while maintaining high accuracy. Extensive simulations demonstrate that MaxKAT can properly control type I error rates and obtain remarkably higher power than KAT under most of the considered scenarios. Application to a porcine dataset used in biomedical experiments of human disease further illustrates its practical utility. AVAILABILITY AND IMPLEMENTATION: The R package MaxKAT that implements the proposed method is available on Github https://github.com/WangJJ-xrk/MaxKAT.


Assuntos
Estudo de Associação Genômica Ampla , Modelos Genéticos , Humanos , Animais , Suínos , Fenótipo , Simulação por Computador
2.
Stat Med ; 40(25): 5534-5546, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34258785

RESUMO

Balancing allocation of assigning units to two treatment groups to minimize the allocation differences is important in biomedical research. The complete randomization, rerandomization, and pairwise sequential randomization (PSR) procedures can be employed to balance the allocation. However, the first two do not allow a large number of covariates. In this article, we generalize the PSR procedure and propose a k-resolution sequential randomization (k-RSR) procedure by minimizing the Mahalanobis distance between both groups with equal group size. The proposed method can be used to achieve adequate balance and obtain a reasonable estimate of treatment effect. Compared to PSR, k-RSR is more likely to achieve the optimal value theoretically. Extensive simulation studies are conducted to show the superiorities of k-RSR and applications to the clinical synthetic data and GAW16 data further illustrate the methods.


Assuntos
Projetos de Pesquisa , Simulação por Computador , Humanos , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA