Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 245(4917): 500-4, 1989 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-17750259

RESUMO

It is conjectured that Triton was captured from a heliocentric orbit as the result of a collision with what was then one of Neptune's regular satellites. The immediate post-capture orbit was highly eccentric with a semimajor axis a approximately 10(3)R(N) and a periapse distance rp that oscillated periodically above a minimum value of about 5R(N). Dissipation due to tides raised by Neptune in Triton caused Triton's orbit to evolve to its present state in less, similar10(9) years. For much of this time Triton was almost entirely molten. While its orbit was evolving, Triton cannibalized most of the regular satellites of Neptune and also perturbed Nereid, thus accounting for that satellite's highly eccentric and inclined orbit. The only regular satellites of Neptune that survived were those that formed well within 5R(N) and they move on inclined orbits as the result of chaotic perturbations forced by Triton. Neptune's arcs are confined around the corotation resonances of one of these inner satellites. The widths and lengths of the arcs imply that the satellite's radius is at least 30/(sin i)(2/3) kilometers for i less, similar 1, where i is the angle of inclination.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(3 Pt 2): 036321, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22060506

RESUMO

The nature of dynamo action in shear flows prone to magnetohydrodynamc instabilities is investigated using the magnetorotational dynamo in Keplerian shear flow as a prototype problem. Using direct numerical simulations and Newton's method, we compute an exact time-periodic magnetorotational dynamo solution to three-dimensional dissipative incompressible magnetohydrodynamic equations with rotation and shear. We discuss the physical mechanism behind the cycle and show that it results from a combination of linear and nonlinear interactions between a large-scale axisymmetric toroidal magnetic field and nonaxisymmetric perturbations amplified by the magnetorotational instability. We demonstrate that this large-scale dynamo mechanism is overall intrinsically nonlinear and not reducible to the standard mean-field dynamo formalism. Our results therefore provide clear evidence for a generic nonlinear generation mechanism of time-dependent coherent large-scale magnetic fields in shear flows and call for new theoretical dynamo models. These findings may offer important clues to understanding the transitional and statistical properties of subcritical magnetorotational turbulence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA