Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Environ Microbiol ; 26(4): e16626, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38646847

RESUMO

The bacterial genus Hafnia has recently attracted attention due to its complex metabolic features and host-interaction capabilities, which are associated with health benefits, primarily weight loss. However, significant gaps remain in our understanding of the genomic characteristics of this emerging microbial group. In this study, we utilized all available high-quality genomes of Hafnia alvei and Hafnia paralvei to uncover the broad distribution of Hafnia in human and honeybee guts, as well as in dairy products, by analysing 1068 metagenomic datasets. We then investigated the genetic traits related to Hafnia's production of vitamins and short-chain fatty acids (SCFAs) through a comparative genomics analysis that included all dominant bacterial species in the three environments under study. Our findings underscore the extensive metabolic capabilities of Hafnia, particularly in the production of vitamins such as thiamine (B1), nicotinate (B3), pyridoxine (B6), biotin (B7), folate (B9), cobalamin (B12), and menaquinone (K2). Additionally, Hafnia demonstrated a conserved genetic makeup associated with SCFA production, including acetate, propanoate, and butanoate. These metabolic traits were further confirmed using RNAseq analyses of a newly isolated H. paralvei strain T10. Overall, our study illuminates the ecological distribution and genetic attributes of this bacterial genus, which is of increasing scientific and industrial relevance.


Assuntos
Microbioma Gastrointestinal , Microbioma Gastrointestinal/genética , Humanos , Animais , Abelhas/microbiologia , Ácidos Graxos Voláteis/metabolismo , Genoma Bacteriano , Microbiologia de Alimentos , Metagenômica , Vitaminas/metabolismo , Filogenia
2.
J Nanobiotechnology ; 22(1): 45, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291460

RESUMO

Amorphous silica nanoparticles (ASNP) are among the nanomaterials that are produced in large quantities. ASNP have been present for a long time in several fast-moving consumer products, several of which imply exposure of the gastrointestinal tract, such as toothpastes, food additives, drug excipients, and carriers. Consolidated use and experimental evidence have consistently pointed to the very low acute toxicity and limited absorption of ASNP. However, slow absorption implies prolonged exposure of the intestinal epithelium to ASNP, with documented effects on intestinal permeability and immune gut homeostasis. These effects could explain the hepatic toxicity observed after oral administration of ASNP in animals. More recently, the role of microbiota in these and other ASNP effects has attracted increasing interest in parallel with the recognition of the role of microbiota in a variety of conditions. Although evidence for nanomaterial effects on microbiota is particularly abundant for materials endowed with bactericidal activities, a growing body of recent experimental data indicates that ASNPs also modify microbiota. The implications of these effects are recounted in this contribution, along with a discussion of the more important open issues and recommendations for future research.


Assuntos
Microbioma Gastrointestinal , Nanopartículas , Animais , Humanos , Dióxido de Silício/toxicidade , Nanopartículas/toxicidade , Mucosa Intestinal
3.
Environ Microbiol ; 24(9): 3912-3923, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35355372

RESUMO

Fresh potable water is an indispensable drink which humans consume daily in substantial amounts. Nonetheless, very little is known about the composition of the microbial community inhabiting drinking water or its impact on our gut microbiota. In the current study, an exhaustive shotgun metagenomics analysis of the tap water microbiome highlighted the occurrence of a highly genetic biodiversity of the microbial communities residing in fresh water and the existence of a conserved core tap water microbiota largely represented by novel microbial species, representing microbial dark matter. Furthermore, genome reconstruction of this microbial dark matter from water samples unveiled homologous sequences present in the faecal microbiome of humans from various geographical locations. Accordingly, investigation of the faecal microbiota content of a subject that daily consumed tap water for 3 years provides proof for horizontal transmission and colonization of water bacteria in the human gut.


Assuntos
Água Potável , Microbioma Gastrointestinal , Microbiota , Bactérias/genética , Humanos , Metagenômica , RNA Ribossômico 16S/genética
4.
Environ Microbiol ; 24(12): 5825-5839, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36123315

RESUMO

The genomic era has resulted in the generation of a massive amount of genetic data concerning the genomic diversity of bacterial taxa. As a result, the microbiological community is increasingly looking for ways to define reference bacterial strains to perform experiments that are representative of the entire bacterial species. Despite this, there is currently no established approach allowing a reliable identification of reference strains based on a comprehensive genomic, ecological, and functional context. In the current study, we developed a comprehensive multi-omics approach that will allow the identification of the optimal reference strains using the Bifidobacterium genus as test case. Strain tracking analysis based on 1664 shotgun metagenomics datasets of healthy infant faecal samples were employed to identify bifidobacterial strains suitable for in silico and in vitro analyses. Subsequently, an ad hoc bioinformatic tool was developed to screen local strain collections for the most suitable species-representative strain alternative. The here presented approach was validated using in vitro trials followed by metagenomics and metatranscriptomics analyses. Altogether, these results demonstrated the validity of the proposed model for reference strain selection, thus allowing improved in silico and in vitro investigations both in terms of cross-laboratory reproducibility and relevance of research findings.


Assuntos
Bifidobacterium , Multiômica , Humanos , Lactente , Bifidobacterium/genética , Reprodutibilidade dos Testes , Fezes/microbiologia , Metagenômica , Bactérias
5.
Appl Environ Microbiol ; 88(12): e0052222, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35652662

RESUMO

Amoxicillin-clavulanic acid (AMC) is the most widely used antibiotic, being frequently prescribed to infants. Particular members of the genus Bifidobacterium are among the first microbial colonizers of the infant gut, and it has been demonstrated that they exhibit various activities beneficial for their human host, including promotion/maintenance of the human gut microbiota homeostasis. It has been shown that natural resistance of bifidobacteria to AMC is limited to a small number of strains. In the current study, we investigated the mitigation effects of AMC-resistant bifidobacteria in diversity preservation of the gut microbiota during AMC treatment. To this end, an in vitro coculture experiment based on infant fecal samples and an in vivo study employing a rodent model were performed. The results confirmed the ability of AMC-resistant bifidobacterial strains to bolster gut microbiota resilience, while specific covariance analysis revealed strain-specific and variable impacts on the microbiota composition by individual bifidobacterial taxa. IMPORTANCE The first microbial colonizers of the infant gut are members of the genus Bifidobacterium, which exhibit different activities beneficial to their host. Amoxicillin-clavulanic acid (AMC) is the most frequently prescribed antibiotic during infancy, and few strains of bifidobacteria are known to show a natural resistance to this antibiotic. In the present work, we evaluated the possible positive effects of AMC-resistant bifidobacterial strains in maintaining gut microbiota diversity during AMC exposure, performing an in vitro and in vivo experiment based on an infant gut model and a rodent model, respectively. Our results suggested the ability of AMC-resistant bifidobacterial strains to support gut microbiota restoration.


Assuntos
Bifidobacterium , Microbioma Gastrointestinal , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antibacterianos/farmacologia , Fezes/microbiologia , Humanos , Lactente
6.
Appl Environ Microbiol ; 87(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33579685

RESUMO

Vaginal microbiota is defined as the community of bacteria residing in the human vaginal tract. Recent studies have demonstrated that the vaginal microbiota is dominated by members of the Lactobacillus genus, whose relative abundance and microbial taxa composition are dependent on the healthy status of this human body site. Particularly, among members of this genus, the high prevalence of Lactobacillus crispatus is commonly associated with a healthy vaginal environment. In the current study, we assessed the microbial composition of 94 healthy vaginal microbiome samples through shotgun metagenomics analyses. Based on our results we observed that L. crispatus was the most representative species and correlated negatively with bacteria involved in vaginal infections. Therefore, we isolated fifteen L. crispatus strains from different environments in which this species is abounding, ranging from vaginal swabs of healthy women to chicken fecal samples. The genomes of these strains were decoded and their genetic content was analyzed and correlated with their physiological features. An extensive comparative genomic analysis encompassing all publicly available genome sequences of L. crispatus and combined with those decoded in this study, revealed a genetic adaptation of strains to their ecological niche. In addition, in vitro growth experiments involving all isolated L. crispatus strains together with a synthetic vaginal microbiota reveal how this species is able to modulate the composition of the vaginal microbial consortia at strain level. Overall, our findings suggest that L. crispatus plays an important ecological role in reducing the complexity of the vaginal microbiota by depleting pathogenic bacteria.Importance The vaginal microbiota is defined as the community of bacteria residing in the human vaginal tract. Recent studies have demonstrated that the high prevalence of Lactobacillus crispatus species is commonly associated with a healthy vaginal environment. In the current study, we assessed the microbial composition of 94 public healthy vaginal samples through shotgun metagenomics analyses. Results showed that L. crispatus was the most representative species and correlated negatively with bacteria involved in vaginal infections. Moreover, we isolated and sequenced the genome of new L. crispatus strains from different environments and the comparative genomics analysis revealed a genetic adaptation of strains to their ecological niche. In addition, in-vitro growth experiments display the capability of this species to modulate the composition of the vaginal microbial consortia. Overall, our findings suggest an ecological role exploited by L. crispatus in reducing the complexity of the vaginal microbiota toward a depletion of pathogenic bacteria.

7.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33483308

RESUMO

Amoxicillin-clavulanic acid (AMC) is one of the most frequently prescribed antibiotic formulations in the Western world. Extensive oral use of this antimicrobial combination influences the gut microbiota. One of the most abundant early colonizers of the human gut microbiota is represented by different taxa of the Bifidobacterium genus, which include many members that are considered to bestow beneficial effects upon their host. In the current study, we investigated the impact of AMC administration on the gut microbiota composition, comparing the gut microbiota of 23 children that had undergone AMC antibiotic therapy to that of 19 children that had not been treated with antibiotics during the preceding 6 months. Moreover, we evaluated AMC sensitivity by MIC test of 261 bifidobacterial strains, including reference strains for the currently recognized 64 bifidobacterial (sub)species, as well as 197 bifidobacterial isolates of human origin. These assessments allowed the identification of four bifidobacterial strains that exhibit a high level of AMC insensitivity, which were subjected to genomic and transcriptomic analyses to identify the putative genetic determinants responsible for this AMC insensitivity. Furthermore, we investigated the ecological role of AMC-resistant bifidobacterial strains by in vitro batch cultures.IMPORTANCE Based on our results, we observed a drastic reduction in gut microbiota diversity of children treated with antibiotics, which also affected the abundance of Bifidobacterium, a bacterial genus commonly found in the infant gut. MIC experiments revealed that more than 98% of bifidobacterial strains tested were shown to be inhibited by the AMC antibiotic. Isolation of four insensitive strains and sequencing of their genomes revealed the identity of possible genes involved in AMC resistance mechanisms. Moreover, gut-simulating in vitro experiments revealed that one strain, i.e., Bifidobacterium breve PRL2020, is able to persist in the presence of a complex microbiota combined with AMC antibiotic.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antibacterianos/farmacologia , Bifidobacterium/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Bifidobacterium/genética , Criança , Pré-Escolar , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Lactente
8.
Artigo em Inglês | MEDLINE | ID: mdl-33226935

RESUMO

Five Bifidobacterium strains, VB23T, VB24T, VB25T, VB26T and VB31T, were isolated from chimpanzee (Pan troglodytes), cotton-top tamarin (Saguinus oedipus), Goeldi's marmoset (Callimico goeldii), moustached tamarin (Saguinus mystax) and patas monkey (Erythrocebus patas), respectively, which were kept in two Czech zoos. These strains were isolated from faecal samples and were Gram-positive, non-motile, non-sporulating, anaerobic and fructose-6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA revealed close relatedness between VB23T and Bifidobacterium angulatum LMG 11039T (96.0 %), VB24T and Bifidobacterium pullorum subsp. pullorum DSM 20433T (96.1 %), VB25T and Bifidobacterium goeldii LMG 30939T (96.5 %), VB26T and Bifidobacterium imperatoris LMG 30297T (98.1 %), and VB31T and B. angulatum LMG 11039T (99.40 %). Internal transcribed spacer profiling revealed that VB23T, VB24T, VB25T, VB26T and VB31T had highest similarity to Bifidobacterium breve LMG 13208T (77.2 %), Bifidobacterium longum subsp. infantis ATCC 15697T (85.8 %), Bifidobacterium biavatii DSM 23969T (76.9 %), B. breve LMG 13208T (81.2 %) and B. angulatum LMG 11039T (88.2 %), respectively. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) analyses with their closest neighbours supported the independent phylogenetic positions of the strains with values between 86.3 and 94.3 % for ANI and 25.8 and 54.9 % for dDDH. These genomic and phylogenetic analyses suggested that the evaluated strains were novel Bifidobacterium species named Bifidobacterium erythrocebi sp. nov. (VB31T=DSM 109960T=CCUG 73843T), Bifidobacterium moraviense sp. nov. (VB25T=DSM 109958T=CCUG 73842T), Bifidobacterium oedipodis sp. nov. (VB24T=DSM 109957T=CCUG 73932T), Bifidobacterium olomucense sp. nov. (VB26T=DSM 109959T=CCUG 73845T) and Bifidobacterium panos sp. nov. (VB23T=DSM 109963T=CCUG 73840T).


Assuntos
Bifidobacterium/classificação , Fezes/microbiologia , Filogenia , Primatas/microbiologia , Animais , Animais de Zoológico/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Bifidobacterium/isolamento & purificação , República Tcheca , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32948523

RESUMO

In recent years, various studies have demonstrated that the gut microbiota influences host metabolism. However, these studies were focused primarily on a single or a limited range of host species, thus preventing a full exploration of possible taxonomic and functional adaptations by gut microbiota members as a result of host-microbe coevolution events. In the current study, the microbial taxonomic profiles of 250 fecal samples, corresponding to 77 host species that cover the mammalian branch of the tree of life, were reconstructed by 16S rRNA gene-based sequence analysis. Moreover, shotgun metagenomics was employed to investigate the metabolic potential of the fecal microbiomes of 24 mammals, and subsequent statistical analyses were performed to assess the impact of host diet and corresponding physiology of the digestive system on gut microbiota composition and functionality. Functional data were confirmed and extended through metatranscriptome assessment of gut microbial populations of eight animals, thus providing insights into the transcriptional response of gut microbiota to specific dietary lifestyles. Therefore, the analyses performed in this study support the notion that the metabolic features of the mammalian gut microbiota have adapted to maximize energy extraction from the host's diet.IMPORTANCE Diet and host physiology have been recognized as main factors affecting both taxonomic composition and functional features of the mammalian gut microbiota. However, very few studies have investigated the bacterial biodiversity of mammals by using large sample numbers that correspond to multiple mammalian species, thus resulting in an incomplete understanding of the functional aspects of their microbiome. Therefore, we investigated the bacterial taxonomic composition of 250 fecal samples belonging to 77 host species distributed along the tree of life in order to assess how diet and host physiology impact the intestinal microbial community by selecting specific microbial players. Conversely, the application of shotgun metagenomics and metatranscriptomics approaches to a group of selected fecal samples allowed us to shed light on both metabolic features and transcriptional responses of the intestinal bacterial community based on different diets.


Assuntos
Bactérias/isolamento & purificação , Dieta/veterinária , Fezes/microbiologia , Microbioma Gastrointestinal , Mamíferos/microbiologia , Mamíferos/fisiologia , Animais , Bactérias/classificação , Perfilação da Expressão Gênica/veterinária , Metagenômica , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Especificidade da Espécie
10.
Appl Environ Microbiol ; 86(12)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32303552

RESUMO

Among the bacterial genera that are used for cheese production, Lactobacillus is a key taxon of high industrial relevance that is commonly present in commercial starter cultures for dairy fermentations. Certain lactobacilli play a defining role in the development of the organoleptic features during the ripening stages of particular cheeses. We performed an in-depth 16S rRNA gene-based microbiota analysis coupled with internally transcribed spacer-mediated Lactobacillus compositional profiling of 21 common Italian cheeses produced from raw milk in order to evaluate the ecological distribution of lactobacilli associated with this food matrix. Statistical analysis of the collected data revealed the existence of putative Lactobacillus community state types (LCSTs), which consist of clusters of Lactobacillus (sub)species. Each LCST is dominated by one or two taxa that appear to represent keystone elements of an elaborate network of positive and negative interactions with minor components of the cheese microbiota. The results obtained in this study reveal the existence of peculiar cheese microbiota assemblies that represent intriguing targets for further functional studies aimed at dissecting the species-specific role of bacteria in cheese manufacturing.IMPORTANCE The microbiota is known to play a key role in the development of the organoleptic features of dairy products. Lactobacilli have been reported to represent one of the main components of the nonstarter bacterial population, i.e., bacteria that are not deliberately added to the milk, harbored by cheese, although the species-level composition of this microbial population has never been assessed in detail. In the present study, we applied a recently developed metagenomic approach that employs an internally transcribed spacer to profile the Lactobacillus population harbored by cheese produced from raw milk at the (sub)species level. The obtained data revealed the existence of particular Lactobacillus community state types consisting of clusters of Lactobacillus (sub)species that tend to cooccur in the screened cheeses. Moreover, analysis of covariances between members of this genus indicate that these taxa form an elaborate network of positive and negative interactions that define specific clusters of covariant lactobacilli.


Assuntos
Queijo/microbiologia , Lactobacillus/fisiologia , Leite/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Itália , Lactobacillus/classificação , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Microbiota , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
11.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32005736

RESUMO

During the course of evolution, dogs and cats have been subjected to extensive domestication, becoming the principal companion animals for humans. For this reason, their health care, including their intestinal microbiota, is considered of considerable importance. However, the canine and feline gut microbiota still represent a largely unexplored research area. In the present work, we profiled the microbiota of 23 feline fecal samples by 16S rRNA gene and bifidobacterial internally transcribed spacer (ITS) approaches and compared this information with previously reported data from 138 canine fecal samples. The obtained data allowed the reconstruction of the core gut microbiota of the above-mentioned samples coupled with their classification into distinct community state types at both genus and species levels, identifying Bacteroides, Fusobacterium, and Prevotella 9 as the main bacterial components of the canine and feline gut microbiota. At the species level, the intestinal bifidobacterial gut communities of dogs and cats differed in terms of both species number and composition, as emphasized by a covariance analysis. Together, our findings show that the intestinal populations of cats and dogs are similar in terms of genus-level taxonomical composition, while at the bifidobacterial species level, clear differences were observed, indicative of host-specific colonization behavior by particular bifidobacterial taxa.IMPORTANCE Currently, domesticated dogs and cats are the most cherished companion animals for humans, and concerns about their health and well-being are therefore important. In this context, the gut microbiota plays a crucial role in maintaining and promoting host health. However, despite the social relevance of domesticated dogs and cats, their intestinal microbial communities are still far from being completely understood. In this study, the taxonomical composition of canine and feline gut microbiota was explored at genus and bifidobacterial species levels, allowing classification of these microbial populations into distinct gut community state types at either of the two investigated taxonomic levels. Furthermore, the reconstruction of core gut microbiota coupled with covariance network analysis based on bifidobacterial internally transcribed spacer (ITS) profiling revealed differences in the bifidobacterial compositions of canine and feline gut microbiota, suggesting that particular bifidobacterial species have developed a selective ability to colonize a specific host.


Assuntos
Bifidobacterium/isolamento & purificação , Gatos/microbiologia , Cães/microbiologia , Microbioma Gastrointestinal , Animais , DNA Espaçador Ribossômico/análise , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
12.
Int J Syst Evol Microbiol ; 70(4): 2288-2297, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32065574

RESUMO

Two Bifidobacterium strains, i.e., 2176BT and 2177BT, were isolated from Golden-Headed Lion Tamarin (Leontopithecus chrysomelas) and Goeldi's monkey (Callimico goeldii). Isolates were shown to be Gram-positive, non-motile, non-sporulating, facultative anaerobic and d-fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA sequences, multilocus sequences (including hsp60, rpoB, dnaJ, dnaG and clpC genes) and the core genome revealed that bifidobacterial strains 2176BT and 2177BT exhibit close phylogenetic relatedness to Bifidobacterium felsineum DSM 103139T and Bifidobacterium bifidum LMG 11041T, respectively. Further genotyping based on the genome sequence of the isolated strains combined with phenotypic analyses, clearly show that these strains are distinct from each of the type strains of the so far recognized Bifidobacterium species. Thus, Bifidobacterium cebidarum sp. nov. (2176BT=LMG 31469T=CCUG 73785T) and Bifidobacterium leontopitheci sp. nov. (2177BT=LMG 31471T=CCUG 73786T are proposed as novel Bifidobacterium species.


Assuntos
Bifidobacterium/classificação , Callimico/microbiologia , Leontopithecus/microbiologia , Filogenia , Aldeído Liases , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Sequência de Bases , Bifidobacterium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fezes/microbiologia , Genes Bacterianos , Peptidoglicano/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709821

RESUMO

Bifidobacteria are members of the gut microbiota of animals, including mammals, birds, and social insects. In this study, we analyzed and determined the pangenome of Bifidobacterium animalis species, encompassing B. animalis subsp. animalis and the B. animalis subsp. lactis taxon, which is one of the most intensely exploited probiotic bifidobacterial species. In order to reveal differences within the B. animalis species, detailed comparative genomics and phylogenomics analyses were performed, indicating that these two subspecies recently arose through divergent evolutionary events. A subspecies-specific core genome was identified for both B. animalis subspecies, revealing the existence of subspecies-defining genes involved in carbohydrate metabolism. Notably, these in silico analyses coupled with carbohydrate profiling assays suggest genetic adaptations toward a distinct glycan milieu for each member of the B. animalis subspecies, resulting in a divergent evolutionary development of the two subspecies.IMPORTANCE The majority of characterized B. animalis strains have been isolated from human fecal samples. In order to explore genome variability within this species, we isolated 15 novel strains from the gastrointestinal tracts of different animals, including mammals and birds. The present study allowed us to reconstruct the pangenome of this taxon, including the genome contents of 56 B. animalis strains. Through careful assessment of subspecies-specific core genes of the B. animalis subsp. animalis/lactis taxon, we identified genes encoding enzymes involved in carbohydrate transport and metabolism, while unveiling specific gene acquisition and loss events that caused the evolutionary emergence of these two subspecies.


Assuntos
Bifidobacterium animalis/genética , Hibridização Genômica Comparativa , Evolução Molecular , Genes Bacterianos/genética , Filogenia , Animais , Bifidobacterium/genética , Bifidobacterium animalis/enzimologia , Bifidobacterium animalis/metabolismo , Aves , Metabolismo dos Carboidratos , Carboidratos , Fezes/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Variação Genética , Genoma Bacteriano/genética , Humanos , Mamíferos , Polissacarídeos , Especificidade da Espécie
14.
Appl Environ Microbiol ; 85(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737347

RESUMO

Bifidobacteria are commensals of the animal gut and are commonly found in mammals, birds, and social insects. Specifically, strains of Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum, and Bifidobacterium pseudolongum are widely distributed in the mammalian gut. In this context, we investigated the genetic variability and metabolic abilities of the B. pseudolongum taxon, whose genomic characterization has so far not received much attention. Phylogenomic analysis of the genome sequences of 60 B. pseudolongum strains revealed that B. pseudolongum subsp. globosum and B. pseudolongum subsp. pseudolongum may actually represent two distinct bifidobacterial species. Furthermore, our analysis highlighted metabolic differences between members of these two subspecies. Moreover, comparative analyses of genetic strategies to prevent invasion of foreign DNA revealed that the B. pseudolongum subsp. globosum group exhibits greater genome plasticity. In fact, the obtained findings indicate that B. pseudolongum subsp. globosum is more adaptable to different ecological niches such as the mammalian and avian gut than is B. pseudolongum subsp. pseudolongumIMPORTANCE Currently, little information exists on the genetics of the B. pseudolongum taxon due to the limited number of sequenced genomes belonging to this species. In order to survey genome variability within this species and explore how members of this taxon evolved as commensals of the animal gut, we isolated and decoded the genomes of 51 newly isolated strains. Comparative genomics coupled with growth profiles on different carbohydrates has further provided insights concerning the genotype and phenotype of members of the B. pseudolongum taxon.


Assuntos
Bifidobacterium/genética , Microbioma Gastrointestinal/genética , Variação Genética , Genoma Bacteriano , Genômica , Animais , Bifidobacterium/classificação , Bifidobacterium/isolamento & purificação , Bifidobacterium/metabolismo , Bifidobacterium longum/genética , DNA Bacteriano/genética , Ecossistema , Microbioma Gastrointestinal/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Filogenia , Simbiose
15.
Microbiome Res Rep ; 3(1): 4, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455080

RESUMO

Background: Recent advances in microbiome sequencing techniques have provided new insights into the role of the microbiome on human health with potential diagnostic implications. However, these developments are often hampered by the presence of a large amount of human DNA interfering with the analysis of the bacterial content. Nowadays, extensive scientific literature focuses on eukaryotic DNA depletion methods, which successfully remove host DNA in microbiome studies, even if a precise assessment of the impact on bacterial DNA is often missing. Methods: Here, we have investigated a saponin-based DNA isolation protocol commonly applied to different biological matrices to deplete the released host DNA. Results: The bacterial DNA obtained was used to assess the relative abundance of bacterial and human DNA, revealing that the inclusion of 2.5% wt/vol saponin allowed the depletion of most of the host's DNA in favor of bacterial DNA enrichment. However, shotgun metagenomic sequencing showed inaccurate microbial profiles of the DNA samples, highlighting an erroneous increase in Gram-positive DNA. Even the application of 0.0125% wt/vol saponin altered the bacterial profile by depleting Gram-negative bacteria, resulting in an overall increase of Gram-positive bacterial DNA. Conclusion: The application of the saponin-based protocol drastically changes the detection of the microbial composition of human-related biological specimens. In this context, we revealed that saponin targets not only host cells but also specific bacterial cells, thus inducing a drastic reduction in the profiling of Gram-negative bacterial DNA.

16.
Microb Biotechnol ; 17(6): e14509, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38878269

RESUMO

The availability of microbial biobanks for the storage of individual gut microbiota members or their derived and artificially assembled consortia has become fundamental for in vitro investigation of the molecular mechanisms behind microbe-microbe and/or microbe-host interactions. However, to preserve bacterial viability, adequate storage and processing technologies are required. In this study, the effects on cell viability of seven different combinations of cryoprotective agents were evaluated by flow cytometry for 53 bacterial species representing key members of the human gut microbiota after one and 3 months of cryopreservation at -80°C. The obtained results highlighted that no universal cryoprotectant was identified capable of guaranteeing effective recovery of intact cells after cryopreservation for all tested bacteria. However, the presence of inulin or skimmed milk provided high levels of viability protection during cryoexposure. These results were further corroborated by cryopreserving 10 artificial gut microbiota produced through in vitro continuous fermentation system technology. Indeed, in this case, the inclusion of inulin or skimmed milk resulted in a high recovery of viable cells, while also allowing consistent and reliable preservation of the artificial gut microbiota biodiversity. Overall, these results suggest that, although the efficacy of various cryoprotective agents is species-specific, some cryoprotectants based on glycerol and the addition of inulin or skimmed milk are preferable to retain viability and biodiversity for both single bacterial species and artificial gut microbiota.


Assuntos
Bactérias , Crioprotetores , Microbioma Gastrointestinal , Viabilidade Microbiana , Humanos , Crioprotetores/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Criopreservação/métodos , Citometria de Fluxo
17.
Artigo em Inglês | MEDLINE | ID: mdl-38354897

RESUMO

Pharmacological inhibition of fatty acid amide hydrolase (FAAH) activity has antidepressant-like effects in preclinical models of stress. In this study, we investigated whether the antidepressant-like effects of FAAH inhibition are associated with corresponding changes in gut microbial and lipidomic profiles, which are emerging as critical components in the pathophysiology of depression. Adult male Wistar rats experienced five weeks of repeated social defeat or control procedure and were treated with the FAAH inhibitor URB694 (0.3 mg/kg/day, i.p.) or vehicle starting from the third week. Repeated social defeat induced the emergence of depressive-like behavioral (sucrose preference reduction and passive coping behaviors in the forced swim test) and neuroendocrine (increased corticosterone levels) changes, which were prevented by URB694 treatment. Repeated social defeat also provoked a significant variation in gut microbiota (changes in the relative abundance of 14 bacterial taxa) and lipidic (e.g., glycerophospholipids) composition. These stress-induced changes were prevented by URB694 treatment. These findings indicate that inhibition of FAAH activity with URB694 blocks the co-occurrence of depressive-like behavioral and neuroendocrine changes and alterations in gut microbial and lipid composition in rats exposed to repeated social defeat. In conclusion, these results suggest that the gut microbiota-lipid crosstalk may represent a novel biological target for FAAH inhibitors to enhance stress resilience.


Assuntos
Compostos de Bifenilo , Carbamatos , Depressão , Microbioma Gastrointestinal , Animais , Masculino , Ratos , Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Depressão/etiologia , Modelos Animais de Doenças , Lipidômica , Lipídeos , Ratos Wistar , Estresse Psicológico/tratamento farmacológico
18.
Front Microbiol ; 15: 1349391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426063

RESUMO

Members of the genus Bifidobacterium are among the first microorganisms colonizing the human gut. Among these species, strains of Bifidobacterium breve are known to be commonly transmitted from mother to her newborn, while this species has also been linked with activities supporting human wellbeing. In the current study, an in silico approach, guided by ecology- and phylogenome-based analyses, was employed to identify a representative strain of B. breve to be exploited as a novel health-promoting candidate. The selected strain, i.e., B. breve PRL2012, was found to well represent the genetic content and functional genomic features of the B. breve taxon. We evaluated the ability of PRL2012 to survive in the gastrointestinal tract and to interact with other human gut commensal microbes. When co-cultivated with various human gut commensals, B. breve PRL2012 revealed an enhancement of its metabolic activity coupled with the activation of cellular defense mechanisms to apparently improve its survivability in a simulated ecosystem resembling the human microbiome.

19.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38782729

RESUMO

Periodontal diseases are among the most common bacterial-related pathologies affecting the oral cavity of dogs. Nevertheless, the canine oral ecosystem and its correlations with oral disease development are still far from being fully characterized. In this study, the species-level taxonomic composition of saliva and dental plaque microbiota of 30 healthy dogs was investigated through a shallow shotgun metagenomics approach. The obtained data allowed not only to define the most abundant and prevalent bacterial species of the oral microbiota in healthy dogs, including members of the genera Corynebacterium and Porphyromonas, but also to identify the presence of distinct compositional motifs in the two oral microniches as well as taxonomical differences between dental plaques collected from anterior and posterior teeth. Subsequently, the salivary and dental plaque microbiota of 18 dogs affected by chronic gingival inflammation and 18 dogs with periodontitis were compared to those obtained from the healthy dogs. This analysis allowed the identification of bacterial and metabolic biomarkers correlated with a specific clinical status, including members of the genera Porphyromonas and Fusobacterium as microbial biomarkers of a healthy and diseased oral status, respectively, and genes predicted to encode for metabolites with anti-inflammatory properties as metabolic biomarkers of a healthy status.


Assuntos
Bactérias , Biomarcadores , Placa Dentária , Doenças do Cão , Microbiota , Doenças Periodontais , Saliva , Animais , Cães , Saliva/microbiologia , Placa Dentária/microbiologia , Doenças Periodontais/microbiologia , Doenças Periodontais/veterinária , Doenças do Cão/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Porphyromonas/genética , Porphyromonas/isolamento & purificação , Metagenômica , Boca/microbiologia , Masculino
20.
Microbiome ; 11(1): 27, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36782241

RESUMO

BACKGROUND: The correlation between the physical performance of athletes and their gut microbiota has become of growing interest in the past years, since new evidences have emerged regarding the importance of the gut microbiota as a main driver of the health status of athletes. In addition, it has been postulated that the metabolic activity of the microbial population harbored by the large intestine of athletes might influence their physical performances. Here, we analyzed 418 publicly available shotgun metagenomics datasets obtained from fecal samples of healthy athletes and healthy sedentary adults. RESULTS: This study evidenced how agonistic physical activity and related lifestyle can be associated with the modulation of the gut microbiota composition, inducing modifications of the taxonomic profiles with an enhancement of gut microbes able to produce short-fatty acid (SCFAs). In addition, our analyses revealed a correlation between specific bacterial species and high impact biological synthases (HIBSs) responsible for the generation of a range of microbially driven compounds such vitamin B12, amino acidic derivatives, and other molecules linked to cardiovascular and age-related health-risk reduction. CONCLUSIONS: Notably, our findings show how subsist an association between competitive athletes, and modulation of the gut microbiota, and how this modulation is reflected in the potential production of microbial metabolites that can lead to beneficial effects on human physical performance and health conditions. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Adulto , Humanos , Microbioma Gastrointestinal/genética , Metagenoma , Bactérias/genética , Atletas , Fezes/microbiologia , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA