RESUMO
Industrial collaborative robots (cobots) are known for their ability to operate in dynamic environments to perform many different tasks (since they can be easily reprogrammed). Due to their features, they are largely used in flexible manufacturing processes. Since fault diagnosis methods are generally applied to systems where the working conditions are bounded, problems arise when defining condition monitoring architecture, in terms of setting absolute criteria for fault analysis and interpreting the meanings of detected values since working conditions may vary. The same cobot can be easily programmed to accomplish more than three or four tasks in a single working day. The extreme versatility of their use complicates the definition of strategies for detecting abnormal behavior. This is because any variation in working conditions can result in a different distribution of the acquired data stream. This phenomenon can be viewed as concept drift (CD). CD is defined as the change in data distribution that occurs in dynamically changing and nonstationary systems. Therefore, in this work, we propose an unsupervised anomaly detection (UAD) method that is capable of operating under CD. This solution aims to identify data changes coming from different working conditions (the concept drift) or a system degradation (failure) and, at the same time, can distinguish between the two cases. Additionally, once a concept drift is detected, the model can be adapted to the new conditions, thereby avoiding misinterpretation of the data. This paper concludes with a proof of concept (POC) that tests the proposed method on an industrial collaborative robot.
RESUMO
In this editorial, we provide an overview of the content of the Special Issue on "Smart Homes". The aim of this Special Issue is to provide a comprehensive collection of some of the current state-of-the-art technologies in the context of smart homes, together with new advanced theoretical and technological solutions that enable smart technology diffusion into homes.
RESUMO
Smart homes play a strategic role for improving life quality of people, enabling to monitor people at home with numerous intelligent devices. Sensors can be installed to provide a continuous assistance without limiting the resident's daily routine, giving her/him greater comfort, well-being and safety. This paper is based on the development of domestic technological solutions to improve the life quality of citizens and monitor the users and the domestic environment, based on features extracted from the collected data. The proposed smart sensing architecture is based on an integrated sensor network to monitor the user and the environment to derive information about the user's behavior and her/his health status. The proposed platform includes biomedical, wearable, and unobtrusive sensors for monitoring user's physiological parameters and home automation sensors to obtain information about her/his environment. The sensor network stores the heterogeneous data both locally and remotely in Cloud, where machine learning algorithms and data mining strategies are used for user behavior identification, classification of user health conditions, classification of the smart home profile, and data analytics to implement services for the community. The proposed solution has been experimentally tested in a pilot study based on the development of both sensors and services for elderly users at home.
RESUMO
In this study, the neuromuscular control modeling of the perturbed human upright stance is assessed through piecewise affine autoregressive with exogenous input (PWARX) models. Ten healthy subjects underwent an experimental protocol where visual deprivation and cognitive load are applied to evaluate whether PWARX can be used for modeling the role of the central nervous system (CNS) in balance maintenance in different conditions. Balance maintenance is modeled as a single-link inverted pendulum; and kinematic, dynamic, and electromyography (EMG) data are used to fit the PWARX models of the CNS activity. Models are trained on 70% and tested on the 30% of unseen data belonging to the remaining dataset. The models are able to capture which factors the CNS is subjected to, showing a fitting accuracy higher than 90% for each experimental condition. The models present a switch between two different control dynamics, coherent with the physiological response to a sudden balance perturbation and mirrored by the data-driven lag selection for data time series. The outcomes of this study indicate that hybrid postural control policies, yet investigated for unperturbed stance, could be an appropriate motor control paradigm when balance maintenance undergoes external disruption.
RESUMO
This work proposes a real-time monitoring tool aimed to support clinicians for remote assessing exercise performances during home-based rehabilitation. The study relies on clinician indications to define kinematic features, that describe five motor tasks (i.e., the lateral tilt of the trunk, lifting of the arms, trunk rotation, pelvis rotation, squatting) usually adopted in the rehabilitation program for axial disorders. These features are extracted by the Kinect v2 skeleton tracking system and elaborated to return disaggregated scores, representing a measure of subjects performance. A bell-shaped function is used to rank the patient performances and to provide the scores. The proposed rehabilitation tool has been tested on 28 healthy subjects and on 29 patients suffering from different neurological and orthopedic diseases. The reliability of the study has been performed through a cross-sectional controlled design methodology, comparing algorithm scores with respect to blinded judgment provided by clinicians through filling a specific questionnaire. The use of task-specific features and the comparison between the clinical evaluation and the score provided by the instrumental approach constitute the novelty of the study. The proposed methodology is reliable for measuring subject's performance and able to discriminate between the pathological and healthy condition.
Assuntos
Exercício Físico , Monitorização Fisiológica/instrumentação , Adulto , Idoso , Algoritmos , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Postura , Reprodutibilidade dos Testes , Adulto JovemRESUMO
Both the theoretical background and the experimental results of an algorithm developed to perform human respiratory rate measurements without any physical contact are presented. Based on depth image sensing techniques, the respiratory rate is derived by measuring morphological changes of the chest wall. The algorithm identifies the human chest, computes its distance from the camera and compares this value with the instantaneous distance, discerning if it is due to the respiratory act or due to a limited movement of the person being monitored. To experimentally validate the proposed algorithm, the respiratory rate measurements coming from a spirometer were taken as a benchmark and compared with those estimated by the algorithm. Five tests were performed, with five different persons sat in front of the camera. The first test aimed to choose the suitable sampling frequency. The second test was conducted to compare the performances of the proposed system with respect to the gold standard in ideal conditions of light, orientation and clothing. The third, fourth and fifth tests evaluated the algorithm performances under different operating conditions. The experimental results showed that the system can correctly measure the respiratory rate, and it is a viable alternative to monitor the respiratory activity of a person without using invasive sensors.