RESUMO
The worldwide dispersal of the ectoparasitic mite Varroa destructor from its Asian origins has fundamentally transformed the relationship of the honey bee (Apis mellifera) with several of its viruses, via changes in transmission and/or host immunosuppression. The extent to which honey bee-virus relationships change after Varroa invasion is poorly understood for most viruses, in part because there are few places in the world with several geographically close but completely isolated honey bee populations that either have, or have not, been exposed long-term to Varroa, allowing for separate ecological, epidemiological, and adaptive relationships to develop between honey bees and their viruses, in relation to the mite's presence or absence. The Azores is one such place, as it contains islands with and without the mite. Here, we combined qPCR with meta-amplicon deep sequencing to uncover the relationship between Varroa presence, and the prevalence, load, diversity, and phylogeographic structure of eight honey bee viruses screened across the archipelago. Four viruses were not detected on any island (ABPV-Acute bee paralysis virus, KBV-Kashmir bee virus, IAPV-Israeli acute bee paralysis virus, BeeMLV-Bee macula-like virus); one (SBV-Sacbrood virus) was detected only on mite-infested islands; one (CBPV-Chronic bee paralysis virus) occurred on some islands, and two (BQCV-Black queen cell virus, LSV-Lake Sinai virus,) were present on every single island. This multi-virus screening builds upon a parallel survey of Deformed wing virus (DWV) strains that uncovered a remarkably heterogeneous viral landscape featuring Varroa-infested islands dominated by DWV-A and -B, Varroa-free islands naïve to DWV, and a refuge of the rare DWV-C dominating the easternmost Varroa-free islands. While all four detected viruses investigated here were affected by Varroa for one or two parameters (usually prevalence and/or the Richness component of ASV diversity), the strongest effect was observed for the multi-strain LSV. Varroa unambiguously led to elevated prevalence, load, and diversity (Richness and Shannon Index) of LSV, with these results largely shaped by LSV-2, a major LSV strain. Unprecedented insights into the mite-virus relationship were further gained from implementing a phylogeographic approach. In addition to enabling the identification of a novel LSV strain that dominated the unique viral landscape of the easternmost islands, this approach, in combination with the recovered diversity patterns, strongly suggests that Varroa is driving the evolutionary change of LSV in the Azores. This study greatly advances the current understanding of the effect of Varroa on the epidemiology and adaptive evolution of these less-studied viruses, whose relationship with Varroa has thus far been poorly defined.
Assuntos
Varroidae , Animais , Abelhas/virologia , Abelhas/parasitologia , Varroidae/virologia , Açores , Vírus de Insetos/genética , Vírus de Insetos/isolamento & purificação , Vírus de Insetos/classificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificaçãoRESUMO
Apiaries in Galicia, northwestern Spain, are currently facing the invasive alien species Vespa velutina, which is well established in the region. The pressure on honey bee colonies is high, resulting in both economic and ecological losses. Honey bee colonies also face the challenge of viruses, which are becoming increasingly diverse. In recent years, honey bee viruses have been spreading across taxonomic groups beyond Apoidea, infecting the Vespoidea superfamily. This cross-species spillover has raised concerns in the scientific community due to the potential risk of viruses spreading in ecosystems. Currently, there is a lack of knowledge on this topic, and further research is needed to address this issue. This study employed qPCR and sequencing to investigate the prevalence, loads, and presence of replicative forms of important honey bee viruses in V. velutina individuals collected from 11 apiaries in Galicia. All V. velutina individuals tested positive for DWV, BQCV, AKI complex (ABPV, KBV, and IAPV), or LSV but not for CBPV. DWV showed the highest prevalence (97.0 %) and loads, with both DWV-A (67.4 %) and DWV-B (32.6 %) being detected. The AKI complex (46.3 %) and LSV (43.3 %) were also common, whereas BQCV (11.9 %) was rarer. LSV is detected for the first time in V. velutina. LSV-2 was the dominant strain (82.1 %), and two less frequent (17.9 %) unknown strains were also detected. All 44 screened V. velutina samples carried the replicative form of DWV, and six of these also carried the replicative form of LSV, raising for the first time the possibility of co-infection in the hornet. The detection of honey bee viruses in V. velutina, and the ability of these viruses to spread to other species, may indicate a potential risk of spillover in the apiaries.
RESUMO
Future climate change scenarios predict threatening outcomes to biodiversity. Available empirical data concerning biological response of freshwater fish to climate change remains scarce. In this study, we investigated the physiological and biochemical responses of two Iberian freshwater fish species (Squalius carolitertii and the endangered S. torgalensis), inhabiting different climatic conditions, to projected future scenarios of warming (+3°C) and acidification (ΔpH=-0.4). Herein, metabolic enzyme activities of glycolytic (citrate synthase - CS, lactate dehydrogenase - LDH) and antioxidant (glutathione S-transferase, catalase and superoxide dismutase) pathways, as well as the heat shock response (HSR) and lipid peroxidation were determined. Our results show that, under current water pH, warming causes differential interspecific changes on LDH activity, increasing and decreasing its activity in S. carolitertii and in S. torgalensis, respectively. Furthermore, the synergistic effect of warming and acidification caused an increase in LDH activity of S. torgalensis, comparing with the warming condition. As for CS activity, acidification significantly decreased its activity in S. carolitertii whereas in S. torgalensis no significant effect was observed. These results suggest that S. carolitertii is more vulnerable to climate change, possibly as the result of its evolutionary acclimatization to milder climatic condition, while S. torgalensis evolved in the warmer Mediterranean climate. However, significant changes in HSR were observed under the combined warming and acidification (S. carolitertii) or under acidification (S. torgalensis). Our results underlie the importance of conducting experimental studies and address species endpoint responses under projected climate change scenarios to improve conservation strategies, and to safeguard endangered freshwater fish.
Assuntos
Aclimatação , Ácidos/metabolismo , Cyprinidae/fisiologia , Água Doce , Resposta ao Choque Térmico , Temperatura Alta , Animais , Antioxidantes/metabolismo , Enzimas/metabolismo , Glicólise , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos , Estresse Oxidativo , Especificidade da EspécieRESUMO
Deformed wing virus (DWV) is a honey bee virus, whose emergence from relative obscurity is driven by the recent host-switch, adaptation, and global dispersal of the ectoparasitic mite Varroa destructor (a highly efficient vector of DWV) to reproduction on honey bees (Apis mellifera). Our study examines how varroa affects the continuing evolution of DWV, using the Azores archipelago, where varroa is present on only three out of the eight Islands, as a natural experimental system for comparing different evolutionary conditions and trajectories. We combined qPCR of 494 honey bee colonies sampled across the archipelago with amplicon deep sequencing to reveal how the DWV genetic landscape is altered by varroa. Two of the varroa-free Islands were also free of DWV, while a further two Islands were intriguingly dominated by the rare DWV-C major variant. The other four Islands, including the three varroa-infested Islands, were dominated by the common DWV-A and DWV-B variants. The varroa-infested Islands had, as expected, an elevated DWV prevalence relative to the uninfested Islands, but not elevated DWV loads, due the relatively high prevalence and loads of DWV-C on the varroa-free Islands. This establishes the Azores as a stable refuge for DWV-C and provides the most convincing evidence to date that at least some major strains of DWV may be capable of not just surviving, but actually thriving in honey bees in the absence of varroa-mediated transmission. We did not detect any change in DWV genetic diversity associated with island varroa status but did find a positive association of DWV diversity with virus load, irrespective of island varroa status.
RESUMO
Molinate is a thiocarbamate herbicide used worldwide in rice crop protection. As with other pesticides, molinate is a recognized environmental pollutant, detected in soils, irrigation water, or rivers and bio-accumulated by some wildlife forms. For this reason, and in spite of its low toxicity to humans, environmental protection measures, which include reduction of use and/or remediation processes, are recommended. Due to its physic-chemical properties, molinate can easily disperse and react in the environment, originating diverse transformation products, some with increased toxicity. In spite of being a xenobiotic compound, molinate can also suffer microbial transformation by bacteria or fungi, sometimes serving as nutrient and energy source. In an attempt to isolate microorganisms to be used in the bioremediation of molinate-contaminated sites, a mixed culture, dominated by the actinobacterium Gulosibacter molinativorax ON4(T), was recovered from the runoff of a molinate-producing plant. Beyond a promising tool to decontaminate molinate-polluted sites, this culture also brought interesting insights into the biology of the degradation of this herbicide. In this review, an overview of the distribution and properties of molinate as environmental contaminant, the capability of microorganisms to transform this herbicide, and some reflections about possible bioremediation approaches are made.
Assuntos
Azepinas/metabolismo , Bactérias/metabolismo , Poluentes Ambientais/metabolismo , Fungos/metabolismo , Herbicidas/metabolismo , Tiocarbamatos/metabolismo , Biodegradação Ambiental , Biotransformação , Consórcios MicrobianosRESUMO
The aims of the present study were to assess the potential of natural attenuation or bioaugmentation to reduce soil molinate contamination in paddy field soils and the impact of these bioremediation strategies on the composition of soil indigenous microbiota. A molinate mineralizing culture (mixed culture DC) was used as inoculum in the bioaugmentation assays. Significantly higher removal of molinate was observed in bioaugmentation than in natural attenuation microcosms (63 and 39 %, respectively) after 42 days of incubation at 22 °C. In the bioaugmentation assays, the impact of Gulosibacter molinativorax ON4(T) on molinate depletion was observed since the gene encoding the enzyme responsible for the initial molinate breakdown (harboured by that actinobacterium) was only detected in inoculated microcosms. Nevertheless, the exogenous mixed culture DC did not overgrow as the heterotrophic counts of the bioaugmentation microcosms were not significantly different from those of natural attenuation and controls. Moreover, the actinobacterial clone libraries generated from the bioaugmentation microcosms did not include any 16S rRNA gene sequences with significant similarity to that of G. molinativorax ON4(T). The multivariate analysis of the 16S rRNA DGGE patterns of the soil microcosm suggested that the activity of mixed culture DC did not affect the soil bacterial community structure since the DGGE patterns of the bioaugmentation microcosms clustered with those of natural attenuation and controls. Although both bioremediation approaches removed molinate without indigenous microbiota perturbation, the results suggested that bioaugmentation with mixed culture DC was more effective to treat soils contaminated with molinate.
Assuntos
Azepinas/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Tiocarbamatos/metabolismo , Bactérias/genética , Biota , Biotransformação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
'Mel dos Açores' is a unique nectar honey produced from the exceptional and diverse flora of the Azores archipelago, categorised as incense honey ('mel de incenso') or multifloral honey ('mel multiflora'). Incense honey should contain over 30 % of pollen grains of Pittosporum undulatum Vent. In this work, a real-time PCR method targeting the ITS region was proposed for the first time to detect P. undulatum in the honey from the Azores. The approach exhibited high analytical performance, achieving a quantification limit of 0.01 pg of incense DNA. The method was successfully applied to 22 honey samples, from which incense was detected in all 9 monofloral incense honeys and in 5 out of 10 multifloral samples from the Azores. Generally, the quantitative results for incense DNA were in good agreement with the melissopalynological data. Therefore, a simple, cost-effective and reliable tool was herein proposed to authenticate and valorise the Azores honey.
Assuntos
Mel , Rosales , Mel/análise , Flores , Açores , Reação em Cadeia da Polimerase em Tempo RealRESUMO
A Gram-positive, aerobic, non-motile, endospore-forming rod, designated DS22(T), was isolated from a drinking-water treatment plant. Cells were catalase- and oxidase-positive. Growth occurred at 15-37 °C, at pH 7-10 and with <8% (w/v) NaCl (optimum growth: 30 °C, pH 7-8 and 1-3% NaCl). The major respiratory quinone was menaquinone 7, the G+C content of the genomic DNA was 36.5 mol% and the cell wall contained meso-diaminopimelic acid. On the basis of 16S rRNA gene sequence analysis, strain DS22(T) was a member of the genus Bacillus. Its closest phylogenetic neighbours were Bacillus horneckiae NRRL B-59162(T) (98.5% 16S rRNA gene sequence similarity), Bacillus oceanisediminis H2(T) (97.9%), Bacillus infantis SMC 4352-1(T) (97.4%), Bacillus firmus IAM 12464(T) (96.8%) and Bacillus muralis LMG 20238(T) (96.8%). DNA-DNA hybridization, and biochemical and physiological characterization allowed the differentiation of strain DS22(T) from its closest phylogenetic neighbours. The data supports the proposal of a novel species, Bacillus purgationiresistans sp. nov.; the type strain is DS22(T) (=DSM 23494(T)=NRRL B-59432(T)=LMG 25783(T)).
Assuntos
Bacillus/classificação , Bacillus/isolamento & purificação , Água Potável/microbiologia , Purificação da Água , Aerobiose , Bacillus/genética , Bacillus/fisiologia , Técnicas de Tipagem Bacteriana , Catalase/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Oxirredutases/metabolismo , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Esporos Bacterianos/citologia , TemperaturaRESUMO
Honey is one of the foods easily adulterated worldwide. Recently, the analysis of honeybee DNA has been proposed as a useful tool to authenticate the entomological origin of honey. However, the methods proposed so far require more than one polymerase chain reaction (PCR) and the use of agarose gels, making the authentication process laborious and lengthy. In this work, a novel real-time PCR coupled with high-resolution melting (HRM) analysis of a 150 bp fragment of the cytochrome c oxidase I (COI) gene is proposed as a fast and simple tool to assess honey's entomological origin by discriminating the mitochondrial DNA lineages of European honey bees (A, M and C lineages). In addition, the new tool allowed the differentiation of honeys produced by different mitotypes of C-lineage ancestry. The method showed high analytical performance and was able to successfully identify the entomological origin of honeys of known origin obtained from research apiaries/beekeepers. Therefore, it was applied to 44 commercial honeys from different countries. It confirmed the entomological authenticity of French PDO honeys that should be produced by the Corse ecotype A. m. mellifera. For the remaining honeys, the results were also in good agreement with the declared geographical origin. However, three honeys from Slovenia did not cluster with C2 mitotype A. m. carnica as expected, suggesting the mixture of honeys produced by honeybees of different mitotypes.
Assuntos
DNA Mitocondrial , Complexo IV da Cadeia de Transporte de Elétrons , Animais , Abelhas/genética , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Géis , Reação em Cadeia da Polimerase em Tempo Real , SefaroseRESUMO
Nosema ceranae is a highly prevalent intracellular parasite of honey bees' midgut worldwide. This Microsporidium was monitored during a long-term study to evaluate the infection at apiary and intra-colony levels in six apiaries in four Mediterranean countries (France, Israel, Portugal, and Spain). Parameters on colony strength, honey production, beekeeping management, and climate were also recorded. Except for São Miguel (Azores, Portugal), all apiaries were positive for N. ceranae, with the lowest prevalence in mainland France and the highest intra-colony infection in Israel. A negative correlation between intra-colony infection and colony strength was observed in Spain and mainland Portugal. In these two apiaries, the queen replacement also influenced the infection levels. The highest colony losses occurred in mainland France and Spain, although they did not correlate with the Nosema infection levels, as parasitism was low in France and high in Spain. These results suggest that both the effects and the level of N. ceranae infection depends on location and beekeeping conditions. Further studies on host-parasite coevolution, and perhaps the interactions with other pathogens and the role of honey bee genetics, could assist in understanding the difference between nosemosis disease and infection, to develop appropriate strategies for its control.
RESUMO
Two bacterial strains (SC-089(T) and SC-092(T)) isolated from sewage sludge compost were characterized by using a polyphasic approach. The isolates were Gram-negative short rods, catalase- and oxidase-positive, and showed good growth at 30 °C, at pH 7 and with 1â% (w/v) NaCl. Ubiquinone 8 was the major respiratory quinone, and phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol were amongst the major polar lipids. On the basis of 16S rRNA gene sequence analysis, the strains were observed to be members of the family Alcaligenaceae, but could not be identified as members of any validly described genus. The low levels of 16S rRNA gene sequence similarity to other recognized taxa, together with comparative analysis of phenotypic traits and chemotaxonomic markers, supported the proposal of a new genus within the family Alcaligenaceae, for which the name Candidimonas gen. nov. is proposed. Strains SC-089(T) and SC-092(T), which shared 99.1â% 16S rRNA gene sequence similarity, could be differentiated at the phenotypic level, and DNA-DNA hybridization results supported their identification as representing distinct species. The names proposed for these novel species are Candidimonas nitroreducens sp. nov. (type strain, SC-089(T)â=âLMG 24812(T)â=âCCUG 55806(T)) and Candidimonas humi sp. nov. (type strain, SC-092(T)â=âLMG 24813(T)â=âCCUG 55807(T)).
Assuntos
Alcaligenaceae/classificação , Alcaligenaceae/isolamento & purificação , Esgotos/microbiologia , Solo , Alcaligenaceae/genética , Alcaligenaceae/fisiologia , Técnicas de Tipagem Bacteriana , Catalase/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Oxirredutases/metabolismo , Fosfolipídeos/análise , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , TemperaturaRESUMO
With a growing number of parasites and pathogens experiencing large-scale range expansions, monitoring diversity in immune genes of host populations has never been so important because it can inform on the adaptive potential to resist the invaders. Population surveys of immune genes are becoming common in many organisms, yet they are missing in the honey bee (Apis mellifera L.), a key managed pollinator species that has been severely affected by biological invasions. To fill the gap, here we identified single nucleotide polymorphisms (SNPs) in a wide range of honey bee immune genes and developed a medium-density assay targeting a subset of these genes. Using a discovery panel of 123 whole-genomes, representing seven A. mellifera subspecies and three evolutionary lineages, 180 immune genes were scanned for SNPs in exons, introns (< 4 bp from exons), 3' and 5´UTR, and < 1 kb upstream of the transcription start site. After application of multiple filtering criteria and validation, the final medium-density assay combines 91 quality-proved functional SNPs marking 89 innate immune genes and these can be readily typed using the high-sample-throughput iPLEX MassARRAY system. This medium-density-SNP assay was applied to 156 samples from four countries and the admixture analysis clustered the samples according to their lineage and subspecies, suggesting that honey bee ancestry can be delineated from functional variation. In addition to allowing analysis of immunogenetic variation, this newly-developed SNP assay can be used for inferring genetic structure and admixture in the honey bee.
Assuntos
Abelhas/genética , Imunidade/genética , Polimorfismo de Nucleotídeo Único , África do Norte , Animais , Abelhas/classificação , Abelhas/imunologia , Europa (Continente) , Feminino , Variação Genética , Imunidade Inata/genética , Masculino , Especificidade da EspécieRESUMO
As an immune-privileged target organ, the eyes have important superficial and internal barriers, protecting them from physical and chemical damage from exogenous and/or endogenous origins that would cause injury to visual acuity or even vision loss. These anatomic, physiological and histologic barriers are thus a challenge for drug access and entry into the eye. Novel therapeutic concepts are highly desirable for eye treatment. The design of an efficient ocular drug delivery system still remains a challenge. Although nanotechnology may offer the ability to detect and treat eye diseases, successful treatment approaches are still in demand. The growing interest in nanopharmaceuticals offers the opportunity to improve ophthalmic treatments. Besides their size, which needs to be critically monitored, nanopharmaceuticals for ophthalmic applications have to be produced under sterilized conditions. In this work, we have revised the different sterilization and depyrogenation methods for ophthalmic nanopharmaceuticals with their merits and drawbacks. The paper also describes clinical sterilization of drugs and the outcomes of inappropriate practices, while recent applications of nanopharmaceuticals for ocular drug delivery are also addressed.
RESUMO
Given scarcity of knowledge on gender ecophysiological responses of tropical marine organisms to global climate change, the major aim of this research was to investigate potential sex differences in oxidative status of topshell Trochus histrio, after a combined exposure to increased temperature and pCO2. Lipid peroxidation, heat-shock response and antioxidant enzymatic activities were evaluated. Lipid peroxidation varied differently between sexes, with males undergoing cellular damage under high pCO2, which was elevated temperature-counteracted. Heat shock response was thermo- and sex-regulated, with males exhibiting significantly higher heat shock proteins production than females. Catalase activity increased with temperature and was exacerbated in combination with hypercapnia, being highest in females, while glutathione S-transferases activity peaked in males. These results clearly support the existence of distinct physiological strategies to cope oxidative stress between sexes, apparently more efficient in females, and also reinforce for the need of encompassing sex as meaningful variable in future biomarker studies.
Assuntos
Dióxido de Carbono/metabolismo , Gastrópodes/fisiologia , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/metabolismo , Organismos Aquáticos/fisiologia , Catalase/metabolismo , Mudança Climática , Biomarcadores Ambientais , Feminino , Glutationa Transferase/metabolismo , Resposta ao Choque Térmico , Peroxidação de Lipídeos , Masculino , Fatores Sexuais , Temperatura , Clima TropicalRESUMO
Increases in carbon dioxide (CO2) and other greenhouse gases emissions are changing ocean temperature and carbonate chemistry (warming and acidification, respectively). Moreover, the simultaneous occurrence of highly toxic and persistent contaminants, such as methylmercury, will play a key role in further shaping the ecophysiology of marine organisms. Despite recent studies reporting mostly additive interactions between contaminant and climate change effects, the consequences of multi-stressor exposure are still largely unknown. Here we disentangled how Argyrosomus regius physiology will be affected by future stressors, by analysing organ-dependent mercury (Hg) accumulation (gills, liver and muscle) within isolated/combined warming (ΔT=4°C) and acidification (ΔpCO2=1100µatm) scenarios, as well as direct deleterious effects and phenotypic stress response over multi-stressor contexts. After 30days of exposure, although no mortalities were observed in any treatments, Hg concentration was enhanced under warming conditions, especially in the liver. On the other hand, elevated CO2 decreased Hg accumulation and consistently elicited a dampening effect on warming and contamination-elicited oxidative stress (catalase, superoxide dismutase and glutathione-S-transferase activities) and heat shock responses. Thus, potentially unpinned on CO2-promoted protein removal and ionic equilibrium between hydrogen and reactive oxygen species, we found that co-occurring acidification decreased heavy metal accumulation and contributed to physiological homeostasis. Although this indicates that fish can be physiologically capable of withstanding future ocean conditions, additional experiments are needed to fully understand the biochemical repercussions of interactive stressors (additive, synergistic or antagonistic).
Assuntos
Peixes/fisiologia , Mercúrio/análise , Água do Mar/química , Estresse Fisiológico , Ácidos/química , Animais , Organismos Aquáticos , Dióxido de Carbono/análise , Mudança Climática , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análiseRESUMO
Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, Fv/Fm) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and Fv/Fm (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, ß-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming.
Assuntos
Ácidos/química , Oceanos e Mares , Zosteraceae/fisiologia , Concentração de Íons de Hidrogênio , Fotobiologia , Pigmentação , Folhas de Planta/fisiologia , Brotos de Planta/fisiologiaRESUMO
Previously, two municipal solid waste commercial composts (MSW1 and MSW2) were characterized. Although sharing the same type of raw material, most of their physicochemical, stability and maturity properties differed. The present study aimed to characterize them at a microbiological level, and to infer on possible relationships between the composts properties and the structure of their bacterial communities. Both the 16S rRNA gene-based PCR-DGGE profiling and 454-pyrosequencing technology showed that the structure of the bacterial communities of these composts was distinct. The bacterial community of MSW1 was more diverse than that of MSW2. Multivariate analyses revealed that the high electrical conductivity, Cu content as well as the low phytotoxity of compost MSW1, when compared to MSW2, contributed most to shape its bacterial community structure. Indeed, high abundance of halophilic (Halomonadaceae and Brevibacteriaceae) and metal resistant organisms (Brevibacteriaceae and Bacillaceae) were found in MSW1. In addition, Pseudonocardiaceae, Streptomycetaceae, Bacillaceae, and Brevibacteriaceae may have contributed to the high humic-like acids content and low phytotoxicity of MSW1. In contrast, the high organic matter content and the high density of the cultivable fungi population were the parameters most correlated with the structure of the bacterial community of compost MSW2, dominated by Corynebacteriaceae and mainly Aerococcaceae, taxonomic groups not commonly found in composts.
Assuntos
Bactérias/classificação , Microbiota , Microbiologia do Solo , Solo/química , Bactérias/genética , Bactérias/isolamento & purificação , Eletroforese em Gel de Gradiente Desnaturante , Reação em Cadeia da Polimerase , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Eliminação de Resíduos , Resíduos Sólidos/análiseRESUMO
Previous studies demonstrated the capability of mixed culture DC1 to mineralize the thiocarbamate herbicide molinate through the activity of molinate hydrolase (MolA). Because liquid suspensions are not compatible with long-term storage and are not easy to handle when bioremediation strategies are envisaged, in this study spray drying was evaluated as a cost-effective method to store and transport these molinate biocatalysts. Microparticles of mixed culture DC1 (DC1) and of cell free crude extracts containing MolA (MA) were obtained without any carrier polymer, and with calcium alginate (CA) or modified chitosan (MCt) as immobilizing agents. All the DC1 microparticles showed high molinate degrading activity upon storage for 6 months, or after 9 additions of â¼0.4 mM molinate over 1 month. The DC1-MCt microparticles were those with the highest survival rate and lowest heterogeneity. For MA microparticles, only MA-MCt degraded molinate. However, its Vmax was only 1.4% of that of the fresh cell free extract (non spray dried). The feasibility of using the DC1-MCt and MA-MCt microparticles in bioaugmentation processes was assessed in river water microcosms, using mass (g):volume (L) ratios of 1:13 and 1:0.25, respectively. Both type of microparticles removed â¼65-75% of the initial 1.5 mg L(-1) molinate, after 7 days of incubation. However, only DC1-MCt microparticles were able to degrade this environmental concentration of molinate without disturbing the native bacterial community. These results suggest that spray drying can be successfully used to produce DC1-MCt microparticles to remediate molinate polluted sites through a bioaugmentation strategy.