Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(10): e0053423, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37681981

RESUMO

The emergence of disinfectant-resistant microorganisms poses a significant threat to public health. These resilient pathogens can survive and thrive in hospital settings despite routine disinfection practices, leading to persistent infections and the potential for outbreaks. In this study, we investigated the impact of 11 different commercial sanitizers at various concentrations and exposure times on biofilms consisting of clinical and nosocomial environmental isolates of Candida parapsilosis and Staphylococcus aureus. Among the sanitizers tested, 0.5% and 2.0% chlorhexidine (CLX), 10% polyvinyl pyrrolidone (PVP-I), a disinfectant based on quaternary ammonium compound (QAC), 2% glutaraldehyde, and 0.55% orthophthalaldehyde (OPA) demonstrated efficacy against both C. parapsilosis and S. aureus in monospecies and mixed biofilms. Analysis showed that 0.5% CLX and 10% PVP-I had fungicidal and bactericidal activity against all biofilms. However, the sanitizer based on QAC and 0.55% OPA proved to be bacteriostatic and fungicidal against both monospecies and mixed biofilms. In mixed biofilms, despite the last four sanitizers exerting fungicidal action, the reduction of fungal cells was approximately 4 log10 CFU/mL compared to monospecies biofilms, showing that the interaction provided more resistance of the yeast to the sanitizer. Formation of mixed biofilms in hospital settings can create an ecological niche that enhances the survival of pathogens against routine sanitization procedures. Therefore, effective sanitization practices, including regular cleaning with effective sanitizers, should be implemented to prevent C. parapsilosis/S. aureus biofilm formation in healthcare settings.


Assuntos
Desinfetantes , Staphylococcus aureus Resistente à Meticilina , Candida parapsilosis , Staphylococcus aureus , Povidona-Iodo , Biofilmes , Desinfetantes/farmacologia , Clorexidina/farmacologia
2.
Microb Pathog ; 123: 206-212, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30025904

RESUMO

Hemodialysis, which is a kidney failure treatment that uses hemodialysis machine, dialyzer, dialysis solution, catheters, and needles, favors biofilm formation. This study evaluates whether Aspergillus, Candida, and Fusarium can form biofilm in dialysis fluids. Biofilms were grown in 96-well microplates containing solutions (acid and basic) consisting of dialysate, dialysate per se, or dialysate plus glucose as culture medium. The biofilms were incubated at 30 °C for 72 h, quantified by the violet crystal methodology, and visualized by transmission electron microscopy. All the fungi formed biomass in all the tested solutions. However, Bonferroni analysis revealed that the dialysate facilitated Aspergillus biomass development, whereas the dialysate and dialysate with glucose provided similar Fusarium oxysporum biomass development. Candida parapsilosis development was favored in biofilms grown in basic electrolytic solution. Electron micrographs of biofilms that grew on catheters after 72 h showed that Aspergillus formed abundant hyphae; the extracellular matrix was visible on the surface of some hyphae when Aspergillus was grown in the dialysate. A multilayered hyphal structure emerged when F. oxysporum biofilms were incubated in the dialysate with glucose. C. parapsilosis biofilm growth in basic solution elicited a dense network of yeasts and pseudohyphae as well as the extracellular matrix; the biofilm was attached across the catheter length. This study may contribute to the formulation of new strategies to monitor biofilm formation and to increase knowledge associated with fungal biofilms in the dialysis environment.


Assuntos
Biofilmes/crescimento & desenvolvimento , Contaminação de Equipamentos , Equipamentos e Provisões/microbiologia , Fungos/metabolismo , Diálise Renal/instrumentação , Aspergillus/isolamento & purificação , Aspergillus/metabolismo , Biomassa , Candida/isolamento & purificação , Candida/metabolismo , Catéteres/microbiologia , Soluções para Diálise , Fusarium/isolamento & purificação , Fusarium/metabolismo , Glucose/metabolismo , Hifas/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA