Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nature ; 539(7629): 411-415, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853213

RESUMO

Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be expected in a wearable device.


Assuntos
Materiais Biomiméticos/química , Biomimética , Polímeros/química , Transistores Eletrônicos , Humanos , Maleabilidade , Pele , Estresse Mecânico , Cicatrização
2.
Nat Mater ; 18(6): 594-601, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30988452

RESUMO

Stretchable semiconducting polymers have been developed as a key component to enable skin-like wearable electronics, but their electrical performance must be improved to enable more advanced functionalities. Here, we report a solution processing approach that can achieve multi-scale ordering and alignment of conjugated polymers in stretchable semiconductors to substantially improve their charge carrier mobility. Using solution shearing with a patterned microtrench coating blade, macroscale alignment of conjugated-polymer nanostructures was achieved along the charge transport direction. In conjunction, the nanoscale spatial confinement aligns chain conformation and promotes short-range π-π ordering, substantially reducing the energetic barrier for charge carrier transport. As a result, the mobilities of stretchable conjugated-polymer films have been enhanced up to threefold and maintained under a strain up to 100%. This method may also serve as the basis for large-area manufacturing of stretchable semiconducting films, as demonstrated by the roll-to-roll coating of metre-scale films.

3.
Angew Chem Int Ed Engl ; 59(10): 3952-3955, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31825136

RESUMO

We present the discovery of a novel radical cation formed through one-electron oxidation of an N-heterocyclic carbene-carbodiimide (NHC-CDI) zwitterionic adduct. This compound possesses a distonic electronic structure (spatially separate spin and charge regions) and displays persistence under ambient conditions. We demonstrate its application in a redox-flow battery exhibiting minimal voltage hysteresis, a flat voltage plateau, high Coulombic efficiency, and no performance decay for at least 100 cycles. The chemical tunability of NHCs and CDIs suggests that this approach could provide a general entry to redox-active NHC-CDI adducts and their persistent radical ions for various applications.

4.
J Am Chem Soc ; 140(37): 11735-11744, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30152228

RESUMO

The electrodeposition of lithium metal is a key process in next-generation, high energy density storage devices. However, the high reactivity of the lithium metal causes short cycling lifetimes and dendrite growth that can pose a serious safety issue. Recently, a number of approaches have been pursued to stabilize the lithium metal-electrolyte interface, including soft polymeric coatings that have shown the ability to enable high-rate and high-capacity lithium metal cycling, but a clear understanding of how to design and modify these coatings has not yet been established. In this work, we studied the effects of several polymers with systematically varied chemical and mechanical properties as coatings on the lithium metal anode. By examining the early stages of lithium metal deposition, we determine that the morphology of the lithium particles is strongly influenced by the chemistry of the polymer coating. We have identified polymer dielectric constant and surface energy as two key descriptors of the lithium deposit size. Low surface energy polymers were found to promote larger deposits with smaller surface areas. This may be explained by a reduced interaction between the coating and the lithium surface and thus an increase in the interfacial energy. On the other hand, high dielectric constant polymers were found to increase the exchange current and gave larger lithium deposits due to the decreased overpotentials at a fixed current density. We also observed that the thickness of the polymer coating should be optimized for each individual polymer. Furthermore, polymer reactivity was found to strongly influence the Coulombic efficiency. Overall, this work offers new fundamental insights into lithium electrodeposition processes and provides direction for the design of new polymer coatings to better stabilize the lithium metal anode.

5.
J Am Chem Soc ; 140(40): 12667-12670, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30252461

RESUMO

N4-acetylcytidine (ac4C) is a highly conserved modified RNA nucleobase whose formation is catalyzed by the disease-associated N-acetyltransferase 10 (NAT10). Here we report a sensitive chemical method to localize ac4C in RNA. Specifically, we characterize the susceptibility of ac4C to borohydride-based reduction and show this reaction can cause introduction of noncognate base pairs during reverse transcription (RT). Combining borohydride-dependent misincorporation with ac4C's known base-sensitivity provides a unique chemical signature for this modified nucleobase. We show this unique reactivity can be used to quantitatively analyze cellular RNA acetylation, study adapters responsible for ac4C targeting, and probe the timing of RNA acetylation during ribosome biogenesis. Overall, our studies provide a chemical foundation for defining an expanding landscape of cytidine acetyltransferase activity and its impact on biology and disease.


Assuntos
Citidina/análogos & derivados , RNA/química , Acetilação , Sequência de Bases , Citidina/análise , Humanos , Conformação de Ácido Nucleico , Oxirredução , RNA Ribossômico/química
6.
J Am Chem Soc ; 140(15): 5280-5289, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29595956

RESUMO

Herein, we report a de novo chemical design of supramolecular polymer materials (SPMs-1-3) by condensation polymerization, consisting of (i) soft polymeric chains (polytetramethylene glycol and tetraethylene glycol) and (ii) strong and reversible quadruple H-bonding cross-linkers (from 0 to 30 mol %). The former contributes to the formation of the soft domain of the SPMs, and the latter furnishes the SPMs with desirable mechanical properties, thereby producing soft, stretchable, yet tough elastomers. The resulting SPM-2 was observed to be highly stretchable (up to 17 000% strain), tough (fracture energy ∼30 000 J/m2), and self-healing, which are highly desirable properties and are superior to previously reported elastomers and tough hydrogels. Furthermore, a gold, thin film electrode deposited on this SPM substrate retains its conductivity and combines high stretchability (∼400%), fracture/notch insensitivity, self-healing, and good interfacial adhesion with the gold film. Again, these properties are all highly complementary to commonly used polydimethylsiloxane-based thin film metal electrodes. Last, we proceed to demonstrate the practical utility of our fabricated electrode via both in vivo and in vitro measurements of electromyography signals. This fundamental understanding obtained from the investigation of these SPMs will facilitate the progress of intelligent soft materials and flexible electronics.


Assuntos
Reagentes de Ligações Cruzadas/síntese química , Polímeros/síntese química , Reagentes de Ligações Cruzadas/química , Eletrodos , Ligação de Hidrogênio , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Conformação Molecular , Polímeros/química
7.
Biochemistry ; 56(42): 5663-5670, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28937750

RESUMO

Histone deacetylase 8 (HDAC8) is a well-characterized member of the class I acetyl-lysine deacetylase (HDAC) family. Previous work has shown that the efficiency of HDAC8-catalyzed deacetylation of a methylcoumarin peptide varies depending on the identity of the divalent metal ion in the HDAC8 active site. Here we demonstrate that both HDAC8 activity and substrate selectivity for a diverse range of peptide substrates depend on the identity of the active site metal ion. Varied deacetylase activities of Fe(II)- and Zn(II)-HDAC8 toward an array of peptide substrates were identified using self-assembled monolayers for matrix-assisted laser desorption ionization (SAMDI) mass spectrometry. Subsequently, the metal dependence of deacetylation of peptides of biological interest was measured using an in vitro peptide assay. While Fe(II)-HDAC8 is generally more active than Zn(II)-HDAC8, the Fe(II)/Zn(II) HDAC8 activity ratio varies widely (from 2 to 150) among the peptides tested. These data provide support for the hypothesis that HDAC8 may undergo metal switching in vivo that, in turn, may regulate its activity. However, future studies are needed to explore the identity of the metal ion bound to HDAC8 in cells under varied conditions.


Assuntos
Histona Desacetilases/química , Ferro/química , Peptídeos/química , Proteínas Repressoras/química , Zinco/química , Acetilação , Catálise , Domínio Catalítico , Histona Desacetilases/metabolismo , Humanos , Ferro/metabolismo , Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Zinco/metabolismo
8.
J Am Chem Soc ; 139(45): 16222-16227, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29035536

RESUMO

The histone deacetylase family comprises 18 enzymes that catalyze deacetylation of acetylated lysine residues; however, the specificity and substrate profile of each isozyme remains largely unknown. Due to transient enzyme-substrate interactions, conventional co-immunoprecipitation methods frequently fail to identify enzyme-specific substrates. Additionally, compensatory mechanisms often limit the ability of knockdown or chemical inhibition studies to achieve significant fold changes observed by acetylation proteomics methods. Furthermore, measured alterations do not guarantee a direct link between enzyme and substrate. Here we present a chemical crosslinking strategy that incorporates a photoreactive, non-natural amino acid, p-benzoyl-l-phenylalanine, into various positions of the structurally characterized isozyme histone deacetylase 8 (HDAC8). After covalent capture, co-immunoprecipitation, and mass spectrometric analysis, we identified a subset of HDAC8 substrates from human cell lysates, which were further validated for catalytic turnover. Overall, this chemical crosslinking approach identified novel HDAC8-specific substrates with high catalytic efficiency, thus presenting a general strategy for unbiased deacetylase substrate discovery.


Assuntos
Domínio Catalítico/genética , Domínio Catalítico/efeitos da radiação , Reagentes de Ligações Cruzadas/efeitos da radiação , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Processos Fotoquímicos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Acetilação , Benzofenonas/metabolismo , Extratos Celulares , Histona Desacetilases/química , Humanos , Lisina/química , Lisina/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/metabolismo , Proteômica , Proteínas Repressoras/química , Reprodutibilidade dos Testes , Especificidade por Substrato
9.
Cytotherapy ; 17(9): 1188-99, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26276002

RESUMO

BACKGROUND AIMS: Multipotent mesenchymal stromal cells (MSCs) are distinguished by their ability to differentiate into a number of stromal derivatives of interest for regenerative medicine, but they also have immunoregulatory properties that are being tested in a number of clinical settings. METHODS: We show that brief incubations with rapamycin, everolimus, FK506 or cyclosporine A increase the immunosuppressive potency of MSCs and other cell types. RESULTS: The treated MSCs are up to 5-fold more potent at inhibiting the induced proliferation of T lymphocytes in vitro. We show that this effect probably is due to adsorption of the drug by the MSCs during pre-treatment, with subsequent diffusion into co-cultures at concentrations sufficient to inhibit T-cell proliferation. MSCs contain measurable amounts of rapamycin after a 15-min exposure, and the potentiating effect is blocked by a neutralizing antibody to the drug. With the use of a pre-clinical model of acute graft-versus-host disease, we demonstrate that a low dose of rapamycin-treated but not untreated umbilical cord-derived MSCs significantly inhibit the onset of disease. CONCLUSIONS: The use of treated MSCs may achieve clinical end points not reached with untreated MSCs and allow for infusion of fewer cells to reduce costs and minimize potential side effects.


Assuntos
Doença Enxerto-Hospedeiro/prevenção & controle , Tolerância Imunológica/efeitos dos fármacos , Imunossupressores/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Sirolimo/farmacologia , Animais , Anticorpos Neutralizantes/imunologia , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Ciclosporina/farmacologia , Modelos Animais de Doenças , Everolimo/farmacologia , Feminino , Doença Enxerto-Hospedeiro/imunologia , Humanos , Terapia de Imunossupressão/métodos , Ativação Linfocitária/imunologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Sirolimo/imunologia , Linfócitos T/imunologia , Tacrolimo/farmacologia , Cordão Umbilical/citologia
10.
PLoS Pathog ; 7(12): e1002396, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22144893

RESUMO

The upper respiratory tract mucosa is the location for commensal Streptococcus (S.) pneumoniae colonization and therefore represents a major site of contact between host and bacteria. The CD4(+) T cell response to pneumococcus is increasingly recognised as an important mediator of immunity that protects against invasive disease, with data suggesting a critical role for Th17 cells in mucosal clearance. By assessing CD4 T cell proliferative responses we demonstrate age-related sequestration of Th1 and Th17 CD4(+) T cells reactive to pneumococcal protein antigens within mucosal lymphoid tissue. CD25(hi) T cell depletion and utilisation of pneumococcal specific MHCII tetramers revealed the presence of antigen specific Tregs that utilised CTLA-4 and PDL-1 surface molecules to suppress these responses. The balance between mucosal effector and regulatory CD4(+) T cell immunity is likely to be critical to pneumococcal commensalism and the prevention of unwanted pathology associated with carriage. However, if dysregulated, such responses may render the host more susceptible to invasive pneumococcal infection and adversely affect the successful implementation of both polysaccharide-conjugate and novel protein-based pneumococcal vaccines.


Assuntos
Envelhecimento/imunologia , Infecções Pneumocócicas/imunologia , Mucosa Respiratória/imunologia , Streptococcus pneumoniae/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Imunidade Celular/fisiologia , Masculino , Vacinas Pneumocócicas/imunologia , Mucosa Respiratória/microbiologia , Células Th17/imunologia
11.
ACS Cent Sci ; 9(2): 206-216, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36844492

RESUMO

Solid polymer electrolytes (SPEs) have the potential to improve lithium-ion batteries by enhancing safety and enabling higher energy densities. However, SPEs suffer from significantly lower ionic conductivity than liquid and solid ceramic electrolytes, limiting their adoption in functional batteries. To facilitate more rapid discovery of high ionic conductivity SPEs, we developed a chemistry-informed machine learning model that accurately predicts ionic conductivity of SPEs. The model was trained on SPE ionic conductivity data from hundreds of experimental publications. Our chemistry-informed model encodes the Arrhenius equation, which describes temperature activated processes, into the readout layer of a state-of-the-art message passing neural network and has significantly improved accuracy over models that do not encode temperature dependence. Chemically informed readout layers are compatible with deep learning for other property prediction tasks and are especially useful where limited training data are available. Using the trained model, ionic conductivity values were predicted for several thousand candidate SPE formulations, allowing us to identify promising candidate SPEs. We also generated predictions for several different anions in poly(ethylene oxide) and poly(trimethylene carbonate), demonstrating the utility of our model in identifying descriptors for SPE ionic conductivity.

12.
Nat Commun ; 13(1): 3415, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701416

RESUMO

Polymer electrolytes are promising candidates for the next generation lithium-ion battery technology. Large scale screening of polymer electrolytes is hindered by the significant cost of molecular dynamics (MD) simulation in amorphous systems: the amorphous structure of polymers requires multiple, repeated sampling to reduce noise and the slow relaxation requires long simulation time for convergence. Here, we accelerate the screening with a multi-task graph neural network that learns from a large amount of noisy, unconverged, short MD data and a small number of converged, long MD data. We achieve accurate predictions of 4 different converged properties and screen a space of 6247 polymers that is orders of magnitude larger than previous computational studies. Further, we extract several design principles for polymer electrolytes and provide an open dataset for the community. Our approach could be applicable to a broad class of material discovery problems that involve the simulation of complex, amorphous materials.


Assuntos
Simulação de Dinâmica Molecular , Polímeros , Fontes de Energia Elétrica , Eletrólitos/química , Lítio/química , Polímeros/química
13.
J Xray Sci Technol ; 19(4): 443-56, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-25214379

RESUMO

OBJECT: Where no society-based or manufacturer guidance on radiation limits to neuromodulation devices is available, this research provides the groundwork for neurosurgeons and radiation oncologists who rely on the computerized treatment plan clinically for cancer patients. The focus of the article is to characterize radiation parameters of attenuation and scatter when an incident therapeutic x-ray beam is directed upon them. At the time of this writing, manufacturers of Neuromodulation products do not recommend direct exposure of the device in the beam nor provide guidance for the maximum dose for these devices. METHODS: Ten neuromodulation models were chosen to represent the finite class of devices marketed by Medtronic before 2011. CT simulations permitted computer treatment modeling for dose distribution analysis as used routinely in radiation oncology for patients. Phantom case results were directly compared to actual clinical patient cases. Radiation detection measurements were then correlated to computational results. Where the x-ray beam passes through the device and is attenuated, dose reduction was identified with Varian Eclipse computer modeling for these posterior locations. RESULTS: Although the computer algorithm did not identify physical processes of side-scatter and back-scatter, these phenomena were proven by radiation measurement to occur. In general, the computer results underestimated the level of change seen by measurement. CONCLUSIONS: For these implantable neurostimulators, the spread in dose changes were found to be -6.2% to -12.5% by attenuation, +1.7% to +3.8% by side-scatter, and +1.1% to +3.1% by back-scatter at 6 MV. At 18 MV, these findings were observed to be -1.4% to -7.0% by attenuation, +1.8% to 5.7% by side-scatter, and 0.8% to 2.7% by back-scatter. No pattern for the behavior of these phenomena was deduced to be a direct consequence of device size.


Assuntos
Neuroestimuladores Implantáveis , Modelos Teóricos , Dosagem Radioterapêutica/normas , Planejamento da Radioterapia Assistida por Computador/normas , Simulação por Computador , Humanos , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X
14.
ACS Chem Biol ; 16(1): 27-34, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33373188

RESUMO

Chemical proteomics provides a powerful strategy for the high-throughput assignment of enzyme function or inhibitor selectivity. However, identifying optimized probes for an enzyme family member of interest and differentiating signal from the background remain persistent challenges in the field. To address this obstacle, here we report a physiochemical discernment strategy for optimizing chemical proteomics based on the coenzyme A (CoA) cofactor. First, we synthesize a pair of CoA-based sepharose pulldown resins differentiated by a single negatively charged residue and find this change alters their capture properties in gel-based profiling experiments. Next, we integrate these probes with quantitative proteomics and benchmark analysis of "probe selectivity" versus traditional "competitive chemical proteomics." This reveals that the former is well-suited for the identification of optimized pulldown probes for specific enzyme family members, while the latter may have advantages in discovery applications. Finally, we apply our anionic CoA pulldown probe to evaluate the selectivity of a recently reported small molecule N-terminal acetyltransferase inhibitor. These studies further validate the use of physical discriminant strategies in chemoproteomic hit identification and demonstrate how CoA-based chemoproteomic probes can be used to evaluate the selectivity of small molecule protein acetyltransferase inhibitors, an emerging class of preclinical therapeutic agents.


Assuntos
Acetiltransferases/química , Sondas Moleculares/química , Proteômica/métodos , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Reprodutibilidade dos Testes , Especificidade por Substrato , Espectrometria de Massas em Tandem/métodos
15.
Immunology ; 129(4): 506-15, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20002211

RESUMO

This study is based on the evidence that immunization of macaques with human CD4(+) T cells elicits prevention of simian immunodeficiency virus (SIV) infection. We hypothesized that heat-shock protein 70 (HSP70) isolated from CD4(+) T cells may act as a chaperone and carry the protective host proteins. Two moieties of HSP70 were affinity-purified from human CD4(+) T cells; an ADP preparation with HSP70-bound proteins (ADP-HSP) and an ATP control preparation. Immunization of rhesus macaques with these preparations showed significant inhibition of SIVmac251 infectivity ex vivo in CD4(+) T cells only with the ADP-HSP (P = 0.01). Proteomic analysis identified three cytoskeletal elements, cofilin, profilin and gamma-actin, exclusively in the ADP-HSP preparation. Investigation of the mechanism of prevention of SIV replication suggests that antibodies to the cytoskeletal proteins may inhibit actin depolymerization and facilitate viral degradation by the innate antiviral APOBEC3G. As cytoskeletal proteins are critical in the formation of virological and immunological synapses, finding specific antibodies and anti-SIV/human immunodeficiency virus (HIV) factors suggests a novel insight into HIV-1 immunopathogenesis.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Proteínas de Choque Térmico HSP70/metabolismo , Profilinas/metabolismo , Vírus da Imunodeficiência Símia/imunologia , Desaminase APOBEC-3G , Fatores de Despolimerização de Actina/química , Actinas/química , Animais , Sítios de Ligação , Citidina Desaminase/imunologia , Eletroforese em Gel Bidimensional , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/isolamento & purificação , Humanos , Macaca , Espectrometria de Massas , Testes de Neutralização , Profilinas/química , Vírus da Imunodeficiência Símia/isolamento & purificação , Replicação Viral/imunologia
16.
Eur J Immunol ; 39(7): 1956-65, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19585516

RESUMO

Allogeneic immunity is one of the most potent natural immune responses. APOBEC3G (A3G) is an intracellular anti-viral factor that deaminates cytidine to uridine. Allogeneic stimulation of human CD4(+) T cells in vitro upregulated A3G mRNA and a significant correlation was found between the mixed leukocyte reaction and A3G mRNA. The mechanism of upregulation of A3G mRNA involves interaction between HLA on DC and TCR of CD4(+) T cells, which is ZAP70 and downstream ERK phosphokinase signalling dependent and induces CD40L and A3G mRNA expression in CD4(+) T cells. Alloimmune-induced A3G was found to be significantly increased in CD45RA(-), CCR5(+) and CD45RA(-)CCR7(-) subsets of effector memory T cells. In vivo studies of women alloimmunized with their partners' PBMC also showed a significant increase in A3G protein in CD4(+) T cells, CD45RO(+) memory and CCR7(-) effector memory T cells. The functional effect of allostimulation upregulating A3G mRNA was demonstrated by a significant decrease in in vitro infectivity, using GFP-labelled pseudovirus and confirmed by a decrease in HIV-1 (BaL) infection of primary CD4(+) T cells. The results suggest that alloimmunization offers an alternative or complementary strategy in inducing an innate anti-viral factor that inhibits HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Citidina Desaminase/metabolismo , HIV-1/crescimento & desenvolvimento , Memória Imunológica/imunologia , Desaminase APOBEC-3G , Western Blotting , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Ligante de CD40/genética , Ligante de CD40/metabolismo , Linhagem Celular , Células Cultivadas , Citidina Desaminase/genética , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , HIV-1/genética , HIV-1/metabolismo , Humanos , Imunização , Antígenos Comuns de Leucócito/metabolismo , Ativação Linfocitária/imunologia , Masculino , RNA Interferente Pequeno/genética , Receptores CCR5/metabolismo , Receptores CCR7/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Proteína-Tirosina Quinase ZAP-70/antagonistas & inibidores , Proteína-Tirosina Quinase ZAP-70/metabolismo
17.
ACS Cent Sci ; 6(7): 1115-1128, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32724846

RESUMO

Molecular details often dictate the macroscopic properties of materials, yet due to their vastly different length scales, relationships between molecular structure and bulk properties can be difficult to predict a priori, requiring Edisonian optimizations and preventing rational design. Here, we introduce an easy-to-execute strategy based on linear free energy relationships (LFERs) that enables quantitative correlation and prediction of how molecular modifications, i.e., substituents, impact the ensemble properties of materials. First, we developed substituent parameters based on inexpensive, DFT-computed energetics of elementary pairwise interactions between a given substituent and other constant components of the material. These substituent parameters were then used as inputs to regression analyses of experimentally measured bulk properties, generating a predictive statistical model. We applied this approach to a widely studied class of electrolyte materials: oligo-ethylene glycol (OEG)-LiTFSI mixtures; the resulting model enables elucidation of fundamental physical principles that govern the properties of these electrolytes and also enables prediction of the properties of novel, improved OEG-LiTFSI-based electrolytes. The framework presented here for using context-specific substituent parameters will potentially enhance the throughput of screening new molecular designs for next-generation energy storage devices and other materials-oriented contexts where classical substituent parameters (e.g., Hammett parameters) may not be available or effective.

18.
J Appl Clin Med Phys ; 10(3): 3-15, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19692972

RESUMO

Vascular access ports are used widely in the administering of drugs for radiation oncology patients. Their dosimetric effect on radiation therapy delivery in photon beams has not been rigorously established. In this work the effects on external beam fields when any of a variety of vascular access ports is included in the path of a high energy beam are studied. This medical physics study specifically identifies side-scatter and back-scatter consequences as well as attenuation effects. The study was divided into two parts: Firstly, a total of 18 ports underwent extended HU range CT scanning followed by 3-D computer treatment planning, where independent homogeneity and heterogeneity plans were created for photon beams of energy 6 MV and 18 MV using a Pencil Beam Convolution (PBC) algorithm. Dose points were analyzed at locations all around each device. A total of 1,440 points were reviewed in this section of the study. Secondly, a mock-up of the largest vascular access port was created in the treatment planning workspace for further investigation with alternative treatment planning algorithms. Plans were generated identically to the above and compared to the results of dose computation between the Pencil Beam Convolution algorithm, the Analytical Anisotropic Algorithm (AAA), and the EGSnrc Monte Carlo algorithm with user code DOSRZnrc (MC). A total of 300 points were reviewed in this part of the study. It was conclusive that ports with more bulky construction and those with partial metal composition create the largest changes. Similar effects are seen for similar port configurations. Considerable differences between the PBC and AAA in comparison to MC are noted and discussed. By thorough examination of planning system results, the presented vascular access ports may now be ranked according to the greatest amount of change exhibited within a treatment planning system. Effects of backscatter, lateral scatter and attenuation are up to 5.0%, 3.4% and 16.8% for 6 MV and 7.0%, 7.7% and 7.2% for 18 MV respectively.


Assuntos
Fótons , Cateteres de Demora , Relação Dose-Resposta à Radiação , Humanos , Planejamento da Radioterapia Assistida por Computador
19.
Adv Sci (Weinh) ; 6(9): 1802353, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31065528

RESUMO

The widespread implementation of lithium-metal batteries (LMBs) with Li metal anodes of high energy density has long been prevented due to the safety concern of dendrite-related failure. Here a solid-liquid hybrid electrolyte consisting of composite polymer electrolyte (CPE) soaked with liquid electrolyte is reported. The CPE membrane composes of self-healing polymer and Li+-conducting nanoparticles. The electrodeposited lithium metal in a uniform, smooth, and dense behavior is achieved using a hybrid electrolyte, rather than dendritic and pulverized structure for a conventional separator. The Li foil symmetric cells can deliver remarkable cycling performance at ultrahigh current density up to 20 mA cm-2 with an extremely low voltage hysteresis over 1500 cycles. A large areal capacity of 10 mAh cm-2 at 10 mA cm-2 could also be obtained. Furthermore, the Li|Li4Ti5O12 cells based on the hybrid electrolyte achieve a higher specific capacity and longer cycling life than those using conventional separators. The superior performances are mainly attributed to strong adhesion, volume conformity, and self-healing functionality of CPE, providing a novel approach and a significant step toward cost-effective and large-scalable LMBs.

20.
Nat Commun ; 10(1): 5384, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772158

RESUMO

The emergence of wearable electronics puts batteries closer to the human skin, exacerbating the need for battery materials that are robust, highly ionically conductive, and stretchable. Herein, we introduce a supramolecular design as an effective strategy to overcome the canonical tradeoff between mechanical robustness and ionic conductivity in polymer electrolytes. The supramolecular lithium ion conductor utilizes orthogonally functional H-bonding domains and ion-conducting domains to create a polymer electrolyte with unprecedented toughness (29.3 MJ m-3) and high ionic conductivity (1.2 × 10-4 S cm-1 at 25 °C). Implementation of the supramolecular ion conductor as a binder material allows for the creation of stretchable lithium-ion battery electrodes with strain capability of over 900% via a conventional slurry process. The supramolecular nature of these battery components enables intimate bonding at the electrode-electrolyte interface. Combination of these stretchable components leads to a stretchable battery with a capacity of 1.1 mAh cm-2 that functions even when stretched to 70% strain. The method reported here of decoupling ionic conductivity from mechanical properties opens a promising route to create high-toughness ion transport materials for energy storage applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA