Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Med ; 72: 243-261, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33052764

RESUMO

Carcinogenesis is a multistep process by which normal cells acquire genetic and epigenetic changes that result in cancer. In combination with host genetic susceptibility and environmental exposures, a prominent procarcinogenic role for the microbiota has recently emerged. In colorectal cancer (CRC), three nefarious microbes have been consistently linked to cancer development: (a) Colibactin-producing Escherichia coli initiates carcinogenic DNA damage, (b) enterotoxigenic Bacteroides fragilis promotes tumorigenesis via toxin-induced cell proliferation and tumor-promoting inflammation, and (c) Fusobacterium nucleatum enhances CRC progression through two adhesins, Fap2 and FadA, that promote proliferation and antitumor immune evasion and may contribute to metastases. Herein, we use these three prominent microbes to discuss the experimental evidence linking microbial activities to carcinogenesis and the specific mechanisms driving this stepwise process. Precisely defining mechanisms by which the microbiota impacts carcinogenesis at each stage is essential for developing microbiota-targeted strategies for the diagnosis, prognosis, and treatment of cancer.


Assuntos
Carcinogênese/genética , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/microbiologia , Microbiota , Neoplasias Colorretais/genética , Progressão da Doença , Humanos
2.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31481410

RESUMO

Fibrosis is a significant complication of intestinal disorders associated with microbial dysbiosis and pathobiont expansion, notably Crohn's disease (CD). Mechanisms that favor fibrosis are not well understood, and therapeutic strategies are limited. Here we demonstrate that colitis-susceptible Il10-deficient mice develop inflammation-associated fibrosis when monoassociated with adherent/invasive Escherichia coli (AIEC) that harbors the yersiniabactin (Ybt) pathogenicity island. Inactivation of Ybt siderophore production in AIEC nearly abrogated fibrosis development in inflamed mice. In contrast, inactivation of Ybt import through its cognate receptor FyuA enhanced fibrosis severity. This corresponded with increased colonic expression of profibrogenic genes prior to the development of histological disease, therefore suggesting causality. fyuA-deficient AIEC also exhibited greater localization within subepithelial tissues and fibrotic lesions that was dependent on Ybt biosynthesis and corresponded with increased fibroblast activation in vitro Together, these findings suggest that Ybt establishes a profibrotic environment in the host in the absence of binding to its cognate receptor and indicate a direct link between intestinal AIEC and the induction of inflammation-associated fibrosis.


Assuntos
Colite/microbiologia , Escherichia coli/metabolismo , Fibrose/etiologia , Inflamação/microbiologia , Interleucina-10/metabolismo , Fenóis/metabolismo , Tiazóis/metabolismo , Animais , Aderência Bacteriana , Colite/complicações , Colite/patologia , Regulação Bacteriana da Expressão Gênica , Vida Livre de Germes , Humanos , Inflamação/patologia , Interleucina-10/genética , Camundongos , Camundongos Knockout , Mutação
3.
Microbiol Spectr ; 11(3): e0350022, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37184392

RESUMO

Escherichia coli isolates from inflammatory bowel disease (IBD) patients are often multidrug resistant, including to streptomycin. Streptomycin resistance (StrR) mutations can alter bacterial behavior, which may influence intestinal disease. We generated a spontaneous StrR strain of the intestinal adherent-invasive E. coli (AIEC) strain NC101. Whole-genome sequencing revealed a single missense mutation in rpsL that commonly confers StrR, rpsL-K43N. StrR NC101 exhibited a striking loss of aggregation and significantly increased motility, behaviors that can impact host-microbe interactions. Behavioral changes were associated with reduced transcription of csgA, encoding the biofilm component curli, and increased transcription of fliC, encoding flagellin. Scanning electron microscopy (SEM) detailed morphologic changes consistent with the observed alterations in multicellular behavior. Because intestinal E. coli isolates exhibit remarkable strain-specific differences, we generated spontaneous StrR mutants of 10 clinical E. coli phylotype B2 strains from patients with IBD, colorectal cancer, and urinary tract infection. Out of these 10 StrR clinical strains, two had altered colony morphology on Congo red agar (suggesting changes in extracellular products), and three had significant changes in motility. These changes were not associated with a particular rpsL mutation nor with the presence of virulence genes encoding the inflammation-associated E. coli metabolites yersiniabactin or colibactin. We conclude that common mutations in rpsL, which confer StrR, can differentially alter disease-associated phenotypes across intestinal E. coli strains. These findings highlight the heterogeneity among seemingly similar intestinal E. coli strains and reveal the need to carefully study the strain-specific effects of antibiotic resistance mutations, particularly when using these mutations during strain selection studies. IMPORTANCE We demonstrate that StrR, commonly acquired through a single point mutation in rpsL (a gene encoding part of the 30S bacterial ribosome), strikingly alters the morphology and behavior of a key intestinal AIEC strain, NC101. These changes include remarkably diminished aggregation and significantly increased motility, traits that are linked to AIEC-defining features and disease development. Phenotypic changes were heterogeneous among other StrR clinical E. coli strains, underscoring the need to evaluate the strain-specific effects of commonly acquired antibiotic resistance mutations. This is important, as the results of studies using mutant StrR Enterobacteriaceae strains (e.g., for cloning or in vivo selection) may be confounded beyond our demonstrated effects. Long term, these findings can help researchers better distinguish the contribution of specific E. coli traits to functional changes in the microbiota. Evaluating these strain-level differences could provide insight into the diversity of IBD symptoms and lead to improved therapies for microbiota-driven intestinal disorders.


Assuntos
Infecções por Escherichia coli , Doenças Inflamatórias Intestinais , Humanos , Estreptomicina/farmacologia , Escherichia coli , Mutação , Mutação Puntual , Infecções por Escherichia coli/microbiologia
4.
Front Cell Infect Microbiol ; 12: 934619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959366

RESUMO

Inflammatory bowel disease (IBD) is a significant global health problem that involves chronic intestinal inflammation and can involve severe comorbidities, including intestinal fibrosis and inflammation-associated colorectal cancer (CRC). Disease-associated alterations to the intestinal microbiota often include fecal enrichment of Enterobacteriaceae, which are strongly implicated in IBD development. This dysbiosis of intestinal flora accompanies changes in microbial metabolites, shaping host:microbe interactions and disease risk. While there have been numerous studies linking specific bacterial taxa with IBD development, our understanding of microbial function in the context of IBD is limited. Several classes of microbial metabolites have been directly implicated in IBD disease progression, including bacterial siderophores and genotoxins. Yet, our microbiota still harbors thousands of uncharacterized microbial products. In-depth discovery and characterization of disease-associated microbial metabolites is necessary to target these products in IBD treatment strategies. Towards improving our understanding of microbiota metabolites in IBD, it is important to recognize how host relevant factors influence microbiota function. For example, changes in host inflammation status, metal availability, interbacterial community structure, and xenobiotics all play an important role in shaping gut microbial ecology. In this minireview, we outline how each of these factors influences gut microbial function, with a specific focus on IBD-associated Enterobacteriaceae metabolites. Importantly, we discuss how altering the intestinal microenvironment could improve the treatment of intestinal inflammation and associated disorders, like intestinal fibrosis and CRC.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Bactérias , Disbiose/microbiologia , Enterobacteriaceae , Fibrose , Humanos , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/microbiologia
5.
Front Microbiol ; 12: 670005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149655

RESUMO

Inflammatory bowel diseases (IBDs) and inflammation-associated colorectal cancer (CRC) are linked to blooms of adherent-invasive Escherichia coli (AIEC) in the intestinal microbiota. AIEC are functionally defined by their ability to adhere/invade epithelial cells and survive/replicate within macrophages. Changes in micronutrient availability can alter AIEC physiology and interactions with host cells. Thus, culturing AIEC for mechanistic investigations often involves precise nutrient formulation. We observed that the pro-inflammatory and pro-carcinogenic AIEC strain NC101 failed to grow in minimal media (MM). We hypothesized that NC101 was unable to synthesize a vital micronutrient normally found in the host gut. Through nutrient supplementation studies, we identified that NC101 is a nicotinic acid (NA) auxotroph. NA auxotrophy was not observed in the other non-toxigenic E. coli or AIEC strains we tested. Sequencing revealed NC101 has a missense mutation in nadA, a gene encoding quinolinate synthase A that is important for de novo nicotinamide adenine dinucleotide (NAD) biosynthesis. Correcting the identified nadA point mutation restored NC101 prototrophy without impacting AIEC function, including motility and AIEC-defining survival in macrophages. Our findings, along with the generation of a prototrophic NC101 strain, will greatly enhance the ability to perform in vitro functional studies that are needed for mechanistic investigations on the role of intestinal E. coli in digestive disease.

6.
ACS Chem Biol ; 16(7): 1243-1254, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34232632

RESUMO

The complex reservoir of metabolite-producing bacteria in the gastrointestinal tract contributes tremendously to human health and disease. Bacterial composition, and by extension gut metabolomic composition, is undoubtably influenced by the use of modern antibiotics. Herein, we demonstrate that polymyxin B, a last resort antibiotic, influences the production of the genotoxic metabolite colibactin from adherent-invasive Escherichia coli (AIEC) NC101. Colibactin can promote colorectal cancer through DNA double stranded breaks and interstrand cross-links. While the structure and biosynthesis of colibactin have been elucidated, chemical-induced regulation of its biosynthetic gene cluster and subsequent production of the genotoxin by E. coli are largely unexplored. Using a multiomic approach, we identified that polymyxin B stress enhances the abundance of colibactin biosynthesis proteins (Clb's) in multiple pks+ E. coli strains, including pro-carcinogenic AIEC, NC101; the probiotic strain, Nissle 1917; and the antibiotic testing strain, ATCC 25922. Expression analysis via qPCR revealed that increased transcription of clb genes likely contributes to elevated Clb protein levels in NC101. Enhanced production of Clb's by NC101 under polymyxin stress matched an increased production of the colibactin prodrug motif, a proxy for the mature genotoxic metabolite. Furthermore, E. coli with a heightened tolerance for polymyxin induced greater mammalian DNA damage, assessed by quantification of γH2AX staining in cultured intestinal epithelial cells. This study establishes a key link between the polymyxin B stress response and colibactin production in pks+ E. coli. Ultimately, our findings will inform future studies investigating colibactin regulation and the ability of seemingly innocuous commensal microbes to induce host disease.


Assuntos
Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Peptídeos/efeitos dos fármacos , Polimixinas/farmacologia , Animais , Evolução Biológica , Linhagem Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Genes Bacterianos/efeitos dos fármacos , Família Multigênica/efeitos dos fármacos , Mutagênicos/metabolismo , Peptídeo Sintases/genética , Peptídeos/metabolismo , Policetídeo Sintases/genética , Policetídeos/metabolismo , Ratos , Regulação para Cima/efeitos dos fármacos
7.
Microb Cell ; 6(8): 324-334, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31403049

RESUMO

From birth, the microbiota plays an essential role in human development by educating host immune responses. Proper maturation of the immune system perturbs chronic inflammation and the pathogenesis of disease by preventing inappropriate immune responses. While many have detailed the roles of specific microbial groups in immune development and human disease, it remains to be elucidated how the microbiota influences the immune system during aging. Furthermore, it is not yet understood how age-related changes to the microbiota and immune system influence the development of age-related diseases. In this review, we outline the role of the microbiota in immune system development as well as functional changes that occur to immune cell populations during immunosenescence. In addition, we highlight how commensal microbes influence the pathogenesis of cancer, a prominent disease of aging. The information provided herein suggests that age-related changes to the microbiota and immune system should be considered in disease treatment and prevention strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA