Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 864: 161003, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36539090

RESUMO

Twenty years of CO2, CH4 and CO greenhouse gas atmospheric concentration measurements at Finokalia station on Crete in the Eastern Mediterranean region are presented. This dataset is the longest in the Eastern Mediterranean, based on bi-weekly grab sampling since 2002 and continuous observations since June 2014. CO2 concentrations increase by 2.4 ppm·y-1 since 2002, in agreement with the general north hemisphere trend as derived by worldwide NOAA observations. CH4 showed a mean increasing trend of 7.5 ppb·y-1 since 2002, a rate that has accelerated since 2018 (12.4 ppb·y-1). In contrast, CO has decreased by 1.6 ppb·y-1 since 2002, which resulted from a strong decrease until 2017 (2.5 ppb·y-1), followed by a small increase in the last 3 years (0.2 ppb·y-1). Both CO2 and CH4 present maxima during winter and minima during summer, in general agreement with the observations at the ICOS stations in Europe. CO also presents the highest values in winter and the lowest values in summer during June, while a secondary maximum is seen in August, which can be attributed to open fires that often occur in the area during this period. The mean summertime diurnal cycles of CH4 and CO agree with a 24-h mean OH radical concentration of the order of 0.3-1 × 107 molecules·cm-3 over the region, in general agreement with the only existing in-situ observations at Finokalia for 2001.

2.
PLoS One ; 17(12): e0278584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36472994

RESUMO

Carbonyl sulfide (COS) fluxes simulated by vegetation and soil component models, both implemented in the ORCHIDEE land surface model, were evaluated against field observations at two agroecosystems in central France. The dynamics of a biogenic process not yet accounted for by this model, i.e., COS emissions from croplands, was examined in the context of three independent and complementary approaches. First, during the growing seasons of 2019 and 2020, monthly variations in the nighttime ratio of vertical mole fraction gradients of COS and carbon dioxide measured between 5 and 180 m height (GradCOS/GradCO2), a proxy of the ratio of their respective nocturnal net fluxes, were monitored at a rural tall tower site near Orléans (i.e., a "profile vs. model" approach). Second, field observations of COS nocturnal fluxes, obtained by the Radon Tracer Method (RTM) at a sub-urban site near Paris, were used for that same purpose (i.e., a "RTM vs. model" approach of unaccounted biogenic emissions). This site has observations going back to 2014. Third, during the growing seasons of 2019, 2020 and 2021, horizontal mole fraction gradients of COS were calculated from downwind-upwind surveys of wheat and rapeseed crops as a proxy of their respective exchange rates at the plot scale (i.e., a "crop based" comparative approach). The "profile vs. model" approach suggests that the nocturnal net COS uptake gradually weakens during the peak growing season and recovers from August on. The "RTM vs. model" approach suggests that there exists a biogenic source of COS, the intensity of which culminates in late June early July. Our "crop based" comparative approach demonstrates that rapeseed crops shift from COS uptake to emission in early summer during the late stages of growth (ripening and senescence) while wheat crops uptake capacities lower markedly. Hence, rapeseed appears to be a much larger source of COS than wheat at the plot scale. Nevertheless, compared to current estimates of the largest COS sources (i.e., marine and anthropogenic emissions), agricultural emissions during the late stages of growth are of secondary importance.


Assuntos
Poluição Ambiental , França , Paris
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA