Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(13): 3423-3426, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390146

RESUMO

Pairs of entangled photons-biphotons-are indispensable in quantum applications. However, some important spectral ranges, like the ultraviolet, have been inaccessible to them so far. Here, we use four-wave mixing in a xenon-filled single-ring photonic crystal fiber to generate biphotons with one of the photons in the ultraviolet and its entangled partner in the infrared spectral range. We tune the biphotons in frequency by varying the gas pressure inside the fiber and thus tailoring the fiber dispersion landscape. The ultraviolet photons are tunable from 271 nm to 231 nm and their entangled partners, from 764 nm to 1500 nm, respectively. Tunability up to 192 THz is achieved by adjusting the gas pressure by only 0.68 bar. At 1.43 bar, the photons of a pair are separated by more than 2 octaves. The access to ultraviolet wavelengths opens the possibility for spectroscopy and sensing with undetected photons in this spectral range.

2.
Opt Lett ; 46(16): 4033-4036, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388804

RESUMO

Tunable biphotons are highly important for a wide range of quantum applications. For some applications, especially interesting are cases where two photons of a pair are far apart in frequency. Here, we report a tunable biphoton source based on a xenon-filled hollow-core photonic crystal fiber. Tunability is achieved by adjusting the pressure of the gas inside the fiber. This allows us to tailor the dispersion landscape of the fiber, overcoming the principal limitations of solid-core fiber-based biphoton sources. We report a maximum tunability of 120 THz for a pressure range of 4 bar with a continuous shift of 30 THz/bar. At 21 bar, the photons of a pair are separated by more than one octave. Despite the large separation, both photons have large bandwidths. At 17 bar, they form a very broad (110 THz) band around the frequency of the pump.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA