Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950419

RESUMO

The flexible regulation of cellular metabolic pathways enables cellular adaptation to changes in energy demand under conditions of stress such as posed by a virus infection. To analyze such an impact on cellular metabolism, rubella virus (RV) was used in this study. RV replication under selected substrate supplementation with glucose, pyruvate, and glutamine as essential nutrients for mammalian cells revealed its requirement for glutamine. The assessment of the mitochondrial respiratory (based on the oxygen consumption rate) and glycolytic (based on the extracellular acidification rate) rate and capacity by respective stress tests through Seahorse technology enabled determination of the bioenergetic phenotype of RV-infected cells. Irrespective of the cellular metabolic background, RV infection induced a shift of the bioenergetic state of epithelial cells (Vero and A549) and human umbilical vein endothelial cells to a higher oxidative and glycolytic level. Interestingly there was a RV strain-specific, but genotype-independent demand for glutamine to induce a significant increase in metabolic activity. While glutaminolysis appeared to be rather negligible for RV replication, glutamine could serve as donor of its amide nitrogen in biosynthesis pathways for important metabolites. This study suggests that the capacity of RVs to induce metabolic alterations could evolve differently during natural infection. Thus, changes in cellular bioenergetics represent an important component of virus-host interactions and could complement our understanding of the viral preference for a distinct host cell population.IMPORTANCE RV pathologies, especially during embryonal development, could be connected with its impact on mitochondrial metabolism. With bioenergetic phenotyping we pursued a rather novel approach in virology. For the first time it was shown that a virus infection could shift the bioenergetics of its infected host cell to a higher energetic state. Notably, the capacity to induce such alterations varied among different RV isolates. Thus, our data add viral adaptation of cellular metabolic activity to its specific needs as a novel aspect to virus-host evolution. In addition, this study emphasizes the implementation of different viral strains in the study of virus-host interactions and the use of bioenergetic phenotyping of infected cells as a biomarker for virus-induced pathological alterations.


Assuntos
Metabolismo Energético , Glutamina/metabolismo , Glicólise/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Vírus da Rubéola/metabolismo , Células A549 , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Glucose/metabolismo , Glucose/farmacologia , Glutamina/farmacologia , Homeostase , Humanos , Cinurenina/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Mitocôndrias/metabolismo , Nucleotídeos/biossíntese , Oxirredução , Estresse Oxidativo , Consumo de Oxigênio/efeitos dos fármacos , Fenótipo , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacologia , Replicação Viral/efeitos dos fármacos
2.
Viruses ; 10(10)2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282907

RESUMO

Rubella virus (RV) infection impacts cellular metabolic activity in a complex manner with strain-specific nutritional requirements. Here we addressed whether this differential metabolic influence was associated with differences in oxidative stress induction and subsequently with innate immune response activation. The low passaged clinical isolates of RV examined in this study induced oxidative stress as validated through generation of the reactive oxygen species (ROS) cytoplasmic hydrogen peroxide and mitochondrial superoxide. The addition of the cytoplasmic and mitochondrial ROS scavengers N-acetyl-l-cysteine and MitoTEMPO, respectively, reduced RV-associated cytopathogenicity and caspase activation. While the degree of oxidative stress induction varied among RV clinical isolates, the level of innate immune response and interferon-stimulated gene activation was comparable. The type III IFNs were highly upregulated in all cell culture systems tested. However, only pre-stimulation with IFN ß slightly reduced RV replication indicating that RV appears to have evolved the ability to counteract innate immune response mechanisms. Through the data presented, we showed that the ability of RV to induce oxidative stress was independent of its capacity to stimulate and counteract the intrinsic innate immune response.


Assuntos
Interferons/metabolismo , Estresse Oxidativo , Vírus da Rubéola/isolamento & purificação , Vírus da Rubéola/metabolismo , Rubéola (Sarampo Alemão)/imunologia , Rubéola (Sarampo Alemão)/metabolismo , Acetilcisteína/farmacologia , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Peróxido de Hidrogênio/metabolismo , Imunidade Inata , Interferon beta/metabolismo , Interferon beta/farmacologia , Interferons/farmacologia , Macrófagos/metabolismo , Macrófagos/virologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA