Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504006

RESUMO

Nowadays due to smart environment creation there is a rapid growth in wireless sensor network (WSN) technology real time applications. The most critical resource in in WSN is battery power. One of the familiar methods which mainly concentrate in increasing the power factor in WSN is clustering. In this research work, a novel concept for clustering is introduced which is multi weight chicken swarm based genetic algorithm for energy efficient clustering (MWCSGA). It mainly consists of six sections. They are system model, chicken swarm optimization, genetic algorithm, CCSO-GA cluster head selection, multi weight clustering model, inter cluster, and intra cluster communication. In the performance evaluation the proposed model is compared with few earlier methods such as Genetic Algorithm-Based Energy-Efficient Adaptive Clustering Protocol For Wireless Sensor Networks (GA-LEACH), Low energy adaptive Clustering hierarchy approach for WSN (MW-LEACH) and Chicken Swarm Optimization based Genetic Algorithm (CSOGA). During the comparison it is proved that our proposed method performed well in terms of energy efficiency, end to end delay, packet drop, packet delivery ratio and network throughput.

2.
Sensors (Basel) ; 21(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34372364

RESUMO

One of the central communication infrastructures of the Internet of Things (IoT) is the IEEE 802.15.4 standard, which defines Low Rate Wireless Personal Area Networks (LR- WPAN). In order to share the medium fairly in a non-beacon-enabled mode, the standard uses Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). The nature of connected objects with respect to various resource constraints makes them vulnerable to cyber attacks. One of the most aggressive DoS attacks is the greedy behaviour attack which aims to deprive legitimate nodes to access to the communication medium. The greedy or selfish node may violate the proper use of the CSMA/CA protocol, by tampering its parameters, in order to take as much bandwidth as possible on the network, and then monopolize access to the medium by depriving legitimate nodes of communication. Based on the analysis of the difference between parameters of greedy and legitimate nodes, we propose a method based on the threshold mechanism to identify greedy nodes. The simulation results show that the proposed mechanism provides a detection efficiency of 99.5%.

3.
Sensors (Basel) ; 21(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804524

RESUMO

Deploying wireless sensor networks (WSN) in rural environments such as agricultural fields may present some challenges that affect the communication between the nodes due to the vegetation. These challenges must be addressed when implementing precision agriculture (PA) systems that monitor the fields and estimate irrigation requirements with the gathered data. In this paper, different WSN deployment configurations for a soil monitoring PA system are studied to identify the effects of the rural environment on the signal and to identify the key aspects to consider when designing a PA wireless network. The PA system is described, providing the architecture, the node design, and the algorithm that determines the irrigation requirements. The testbed includes different types of vegetation and on-ground, near-ground, and above-ground ESP32 Wi-Fi node placements. The results of the testbed show high variability in densely vegetated areas. These results are analyzed to determine the theoretical maximum coverage for acceptable signal quality for each of the studied configurations. The best coverage was obtained for the near-ground deployment. Lastly, the aspects of the rural environment and the deployment that affect the signal such as node height, crop type, foliage density, or the form of irrigation are discussed.

4.
Sensors (Basel) ; 20(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075172

RESUMO

Water management is paramount in countries with water scarcity. This also affects agriculture, as a large amount of water is dedicated to that use. The possible consequences of global warming lead to the consideration of creating water adaptation measures to ensure the availability of water for food production and consumption. Thus, studies aimed at saving water usage in the irrigation process have increased over the years. Typical commercial sensors for agriculture irrigation systems are very expensive, making it impossible for smaller farmers to implement this type of system. However, manufacturers are currently offering low-cost sensors that can be connected to nodes to implement affordable systems for irrigation management and agriculture monitoring. Due to the recent advances in IoT and WSN technologies that can be applied in the development of these systems, we present a survey aimed at summarizing the current state of the art regarding smart irrigation systems. We determine the parameters that are monitored in irrigation systems regarding water quantity and quality, soil characteristics and weather conditions. We provide an overview of the most utilized nodes and wireless technologies. Lastly, we will discuss the challenges and the best practices for the implementation of sensor-based irrigation systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA