Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1011980, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662774

RESUMO

Thousands of endoparasitoid wasp species in the families Braconidae and Ichneumonidae harbor "domesticated endogenous viruses" (DEVs) in their genomes. This study focuses on ichneumonid DEVs, named ichnoviruses (IVs). Large quantities of DNA-containing IV virions are produced in ovary calyx cells during the pupal and adult stages of female wasps. Females parasitize host insects by injecting eggs and virions into the body cavity. After injection, virions rapidly infect host cells which is followed by expression of IV genes that promote the successful development of wasp offspring. IV genomes consist of two components: proviral segment loci that serve as templates for circular dsDNAs that are packaged into capsids, and genes from an ancestral virus that produce virions. In this study, we generated a chromosome-scale genome assembly for Hyposoter didymator that harbors H. didymator ichnovirus (HdIV). We identified a total of 67 HdIV loci that are amplified in calyx cells during the wasp pupal stage. We then focused on an HdIV gene, U16, which is transcribed in calyx cells during the initial stages of replication. Sequence analysis indicated that U16 contains a conserved domain in primases from select other viruses. Knockdown of U16 by RNA interference inhibited virion morphogenesis in calyx cells. Genome-wide analysis indicated U16 knockdown also inhibited amplification of HdIV loci in calyx cells. Altogether, our results identified several previously unknown HdIV loci, demonstrated that all HdIV loci are amplified in calyx cells during the pupal stage, and showed that U16 is required for amplification and virion morphogenesis.


Assuntos
Replicação Viral , Vespas , Animais , Vespas/virologia , Vespas/genética , Replicação Viral/genética , Genoma Viral , Feminino , Genes Virais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Polydnaviridae/genética , Vírion/genética
2.
J Virol ; 97(11): e0081723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877717

RESUMO

IMPORTANCE: Understanding how bracoviruses (BVs) function in wasps is of broad interest in the study of virus evolution. This study characterizes most of the Microplitis demolitor bracovirus (MdBV) genes whose products are nucleocapsid components. Results indicate several genes unknown outside of nudiviruses and BVs are essential for normal capsid assembly. Results also indicate most MdBV tyrosine recombinase family members and the DNA binding protein p6.9-1 are required for DNA processing and packaging into nucleocapsids.


Assuntos
Proteínas do Capsídeo , Polydnaviridae , Vírion , Animais , Capsídeo/química , Capsídeo/metabolismo , Polydnaviridae/genética , Polydnaviridae/metabolismo , Vírion/química , Vírion/genética , Vírion/metabolismo , Vespas/virologia , Proteínas do Capsídeo/genética , Proteínas de Ligação a DNA/metabolismo , Empacotamento do Genoma Viral , DNA Viral/metabolismo , Recombinases/metabolismo
3.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33591247

RESUMO

Bracoviruses (BVs) are endogenized nudiviruses that braconid parasitoid wasps have coopted for functions in parasitizing hosts. Microplitis demolitor is a braconid wasp that produces Microplitis demolitor bracovirus (MdBV) and parasitizes the larval stage of the moth Chrysodeixis includens. Some BV core genes are homologs of genes also present in baculoviruses while others are only known from nudiviruses or other BVs. In this study, we had two main goals. The first was to separate MdBV virions into envelope and nucleocapsid fractions before proteomic analysis to identify core gene products that were preferentially associated with one fraction or the other. Results indicated that nearly all MdBV baculovirus-like gene products that were detected by our proteomic analysis had similar distributions to homologs in the occlusion-derived form of baculoviruses. Several core gene products unknown from baculoviruses were also identified as envelope or nucleocapsid components. Our second goal was to functionally characterize a core gene unknown from baculoviruses that was originally named HzNVorf64-like. Immunoblotting assays supported our proteomic data that identified HzNVorf64-like as an envelope protein. We thus renamed HzNVorf64-like as MdBVe46, which we further hypothesized was important for infection of C. includens. Knockdown of MdBVe46 by RNA interference (RNAi) greatly reduced transcript and protein abundance. Knockdown of MdBVe46 also altered virion morphogenesis, near-fully inhibited infection of C. includens, and significantly reduced the proportion of hosts that were successfully parasitized by M. demolitor.


Assuntos
Mariposas/virologia , Polydnaviridae/fisiologia , Vírion/ultraestrutura , Animais , DNA Viral/química , DNA Viral/genética , Larva/virologia , Polydnaviridae/genética , Proteômica/métodos , Interferência de RNA , Proteínas Virais
4.
PLoS Pathog ; 15(12): e1008210, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31834912

RESUMO

There are many documented examples of viral genes retained in the genomes of multicellular organisms that may in some cases bring new beneficial functions to the receivers. The ability of certain ichneumonid parasitic wasps to produce virus-derived particles, the so-called ichnoviruses (IVs), not only results from the capture and domestication of single viral genes but of almost entire ancestral virus genome(s). Indeed, following integration into wasp chromosomal DNA, the putative and still undetermined IV ancestor(s) evolved into encoding a 'virulence gene delivery vehicle' that is now required for successful infestation of wasp hosts. Several putative viral genes, which are clustered in distinct regions of wasp genomes referred to as IVSPERs (Ichnovirus Structural Protein Encoding Regions), have been assumed to be involved in virus-derived particles morphogenesis, but this question has not been previously functionally addressed. In the present study, we have successfully combined RNA interference and transmission electron microscopy to specifically identify IVSPER genes that are responsible for the morphogenesis and trafficking of the virus-derived particles in ovarian cells of the ichneumonid wasp Hyposoter didymator. We suggest that ancestral viral genes retained within the genomes of certain ichneumonid parasitoids possess conserved functions which were domesticated for the purpose of assembling viral vectors for the delivery of virulence genes to parasitized host animals.


Assuntos
Vírion/fisiologia , Vespas/genética , Vespas/virologia , Animais , Genes Virais/genética , Polydnaviridae/genética , Interferência de RNA
5.
Virologie (Montrouge) ; 24(2): 113-125, 2020 04 01.
Artigo em Francês | MEDLINE | ID: mdl-32540821

RESUMO

Polydnaviruses are unique mutualistic viruses associated with thousands of parasitoid wasps. They are characterized by a segmented packaged DNA genome and are necessary for parasitic success. Virus particles are produced in the wasp ovaries from a set of "viral" sequences integrated into the wasp genome. The polydnavirus/wasp associations as observed today result from the integration of a viral genomes into the wasp genome during evolution. Recent years have been marked by the discovery of the viral ancestors of the two known types of polydnavirus, bracovirus and ichnovirus, which has helped to shed some light on the evolution of the symbiosis. Some of the viral genes have been conserved in the genome of the parasitoid, allowing the latter to produce non-replicative viral particles, that contain DNA molecules encoding essentially "virulence" genes, probably of insect origin. Thus polydnaviruses can be considered as endogenous viral elements (EVE) that have been domesticated by the wasp to become a "weapon" allowing its survival.

6.
J Exp Biol ; 221(Pt 20)2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30206107

RESUMO

Winged aphids are described as hosts of lesser quality for parasitoids because a part of their resources is used to produce wings and associated muscles during their development. Host lipid content is particularly important for parasitoid larvae as they lack lipogenesis and therefore rely entirely on the host for this resource. The goal of this study was to determine to what extent winged and wingless aphids differ from a nutritional point of view and whether these differences impact parasitoid fitness, notably the lipid content. We analysed the energetic budget (proteins, lipids and carbohydrates) of aphids of different ages (third instars, fourth instars and adults) according to the morph (winged or wingless). We also compared fitness indicators for parasitoids emerging from winged and wingless aphids (third and fourth instars). We found that in third instars, parasitoids are able to inhibit wing development whereas this is not the case in fourth instars. Both winged instars allow the production of heavier and fattier parasitoids. The presence of wings in aphids seems to have little effect on the fitness of emerging parasitoids and did not modify female choice for oviposition. Finally, we demonstrate that Aphidius colemani, used as a biological control agent, is able to parasitize wingless as well as winged Myzus persicae, at least in the juvenile stages. If the parasitism occurs in third instars, the parasitoid will prevent the aphid from flying, which could in turn reduce virus transmission.


Assuntos
Afídeos/fisiologia , Afídeos/parasitologia , Interações Hospedeiro-Parasita , Valor Nutritivo , Vespas/fisiologia , Animais , Afídeos/crescimento & desenvolvimento , Aptidão Genética , Asas de Animais/crescimento & desenvolvimento
7.
Curr Opin Insect Sci ; 49: 63-70, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34839031

RESUMO

Bracoviruses (BVs) and ichnoviruses (IVs) evolved from different endogenized viruses but through convergence have been coopted by parasitoids in the families Braconidae and Ichneumonidae for similar functions in parasitizing hosts. Experimentally studying the role of endogenized viral genes in virion morphogenesis remains a key challenge in the study of BVs and IVs. Here we summarize how multiomics, electron microscopy, and RNA interference (RNAi) methods have provided new insights about BV and IV gene function.


Assuntos
Polydnaviridae , Vespas , Animais , Humanos , Morfogênese , Polydnaviridae/genética , Interferência de RNA , Vírion/genética , Vespas/genética
8.
Parasit Vectors ; 15(1): 127, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413939

RESUMO

BACKGROUND: Anautogenous mosquitoes commonly consume nectars and other solutions containing sugar but are thought to only produce eggs in discrete gonadotrophic cycles after blood-feeding on a vertebrate host. However, some anautogenous species are known to produce eggs if amino acids in the form of protein are added to a sugar solution. Unclear is how different sources of amino acids in sugar solutions affect the processes that regulate egg formation and whether responses vary among species. In this study, we addressed these questions by focusing on Aedes aegypti and conducting some comparative assays with Aedes albopictus, Anopheles gambiae, Anopheles stephensi and Culex quinquefasciatus. METHODS: Adult female mosquitoes were fed sugar solutions containing amino acids, peptides or protein. Markers for activation of a gonadotrophic cycle including yolk deposition into oocytes, oviposition, ovary ecdysteroidogenesis, expression of juvenile hormone and 20-hydroxyecdysone-responsive genes, and adult blood-feeding behavior were then measured. RESULTS: The five anautogenous species we studied produced eggs when fed two proteins (bovine serum albumin, hemoglobin) or a mixture of peptides (tryptone) in 10% sucrose but deposited only small amounts of yolk into oocytes when fed amino acids in 10% sucrose. Focusing on Ae. aegypti, cultures were maintained for multiple generations by feeding adult females protein- or tryptone-sugar meals. Ad libitum access to protein- or tryptone-sugar solutions protracted production of ecdysteroids by the ovaries, vitellogenin by the fat body and protease activity by the midgut albeit at levels that were lower than in blood-fed females. Females also exhibited semi-continual oogenesis and repressed host-seeking behavior. CONCLUSIONS: Several anautogenous mosquitoes produce eggs when provided ad libitum access to protein- or peptide-sugar meals, but several aspects of oogenesis also differ from females that blood-feed.


Assuntos
Aedes , Anopheles , Aedes/fisiologia , Aminoácidos/metabolismo , Animais , Feminino , Oogênese/fisiologia , Peptídeos , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA