Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955839

RESUMO

Nine kDa granulysin (GRNLY) is a human cytolytic protein secreted by cytotoxic T lymphocytes (CTL) and NK cells of the immune system whose demonstrated physiological function is the elimination of bacteria and parasites. In previous studies by our group, the anti-tumor capacity of recombinant granulysin was demonstrated, both in vitro and in vivo. In the present work, we developed lipid nanoparticles whose surfaces can bind recombinant granulysin through the formation of a complex of coordination between the histidine tail of the protein and Ni2+ provided by a chelating lipid in the liposome composition and termed them LUV-GRNLY, for granulysin-bound large unilamellar vesicles. The objective of this formulation is to increase the granulysin concentration at the site of contact with the target cell and to increase the cytotoxicity of the administered dose. The results obtained in this work indicate that recombinant granulysin binds to the surface of the liposome with high efficiency and that its cytotoxicity is significantly increased when it is in association with liposomes. In addition, it has been demonstrated that the main mechanism of death induced by both granulysin and LUV-GRNLY is apoptosis. Jurkat-shBak cells are resistant to GRNLY and also to LUV-GRNLY, showing that LUV-GRNLY uses the mitochondrial apoptotic pathway to induce cell death. On the other hand, we show that LUV-GRNLY induces the expression of the pro-apoptotic members of the Bcl-2 family Bim and especially PUMA, although it also induced the expression of anti-apoptotic Bcl-xL. In conclusion, we demonstrate that binding of GRNLY to the surfaces of liposomes clearly augments its cytotoxic potential, with cell death executed mainly by the mitochondrial apoptotic pathway.


Assuntos
Antígenos de Diferenciação de Linfócitos T , Lipossomos , Antígenos de Diferenciação de Linfócitos T/metabolismo , Apoptose/fisiologia , Humanos , Células Jurkat , Nanopartículas , Isoformas de Proteínas
2.
Infect Immun ; 89(9): e0066520, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-33526567

RESUMO

Immunotherapy has become a new paradigm in oncology, improving outcomes for several types of cancer. However, there are some aspects about its management that remain uncertain. One of the key points that needs better understanding is the interaction between immunotherapy and gut microbiome and how modulation of the microbiome might modify the efficacy of immunotherapy. Consequently, the negative impact of systemic antibiotics and corticosteroids on the efficacy of immunotherapy needs to be clarified.


Assuntos
Corticosteroides/farmacologia , Antibacterianos/farmacologia , Interações entre Hospedeiro e Microrganismos , Inibidores de Checkpoint Imunológico/uso terapêutico , Microbiota , Neoplasias/tratamento farmacológico , Probióticos , Corticosteroides/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunomodulação/efeitos dos fármacos , Interações Microbianas/efeitos dos fármacos , Interações Microbianas/imunologia , Microbiota/efeitos dos fármacos , Neoplasias/etiologia , Resultado do Tratamento
3.
Eur Respir J ; 58(3)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33574074

RESUMO

BACKGROUND: Lung ultrasound is feasible for assessing lung injury caused by coronavirus disease 2019 (COVID-19). However, the prognostic meaning and time-line changes of lung injury assessed by lung ultrasound in COVID-19 hospitalised patients are unknown. METHODS: Prospective cohort study designed to analyse prognostic value of lung ultrasound in COVID-19 patients by using a quantitative scale (lung ultrasound Zaragoza (LUZ)-score) during the first 72 h after admission. The primary end-point was in-hospital death and/or admission to the intensive care unit. Total length of hospital stay, increase of oxygen flow and escalation of medical treatment during the first 72 h were secondary end-points. RESULTS: 130 patients were included in the final analysis; mean±sd age was 56.7±13.5 years. Median (interquartile range) time from the beginning of symptoms to admission was 6 (4-9) days. Lung injury assessed by LUZ-score did not differ during the first 72 h (21 (16-26) points at admission versus 20 (16-27) points at 72 h; p=0.183). In univariable logistic regression analysis, estimated arterial oxygen tension/inspiratory oxygen fraction ratio (PAFI) (hazard ratio 0.99, 95% CI 0.98-0.99; p=0.027) and LUZ-score >22 points (5.45, 1.42-20.90; p=0.013) were predictors for the primary end-point. CONCLUSIONS: LUZ-score is an easy, simple and fast point-of-care ultrasound tool to identify patients with severe lung injury due to COVID-19, upon admission. Baseline score is predictive of severity along the whole period of hospitalisation. The score facilitates early implementation or intensification of treatment for COVID-19 infection. LUZ-score may be combined with clinical variables (as estimated by PAFI) to further refine risk stratification.


Assuntos
COVID-19 , Sistemas Automatizados de Assistência Junto ao Leito , Adulto , Idoso , Mortalidade Hospitalar , Humanos , Pulmão/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Prospectivos , Medição de Risco , SARS-CoV-2
4.
Nano Lett ; 20(9): 6466-6472, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32787172

RESUMO

Measurement of thermogenesis in individual cells is a remarkable challenge due to the complexity of the biochemical environment (such as pH and ionic strength) and to the rapid and yet not well-understood heat transfer mechanisms throughout the cell. Here, we present a unique system for intracellular temperature mapping in a fluorescence microscope (uncertainty of 0.2 K) using rationally designed luminescent Ln3+-bearing polymeric micellar probes (Ln = Sm, Eu) incubated in breast cancer MDA-MB468 cells. Two-dimensional (2D) thermal images recorded increasing the temperature of the cells culture medium between 296 and 304 K shows inhomogeneous intracellular temperature progressions up to ∼20 degrees and subcellular gradients of ∼5 degrees between the nucleolus and the rest of the cell, illustrating the thermogenic activity of the different organelles and highlighting the potential of this tool to study intracellular processes.


Assuntos
Elementos da Série dos Lantanídeos , Luminescência , Micelas , Polímeros , Temperatura
5.
Int J Mol Sci ; 19(5)2018 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-29757258

RESUMO

Sarcomas are rare and heterogeneous cancers classically associated with a poor outcome. Sarcomas are 1% of the cancer but recent estimations indicate that sarcomas account for 2% of the estimated cancer-related deaths. Traditional treatment with surgery, radiotherapy, and chemotherapy has improved the outcome for some types of sarcomas. However, novel therapeutic strategies to treat sarcomas are necessary. TNF-related apoptosis-inducing ligand (TRAIL) is a death ligand initially described as capable of inducing apoptosis on tumor cell while sparing normal cells. Only few clinical trials have used TRAIL-based treatments in sarcoma, but they show only low or moderate efficacy of TRAIL. Consequently, novel TRAIL formulations with an improved TRAIL bioactivity are necessary. Our group has developed a novel TRAIL formulation based on tethering this death ligand on a lipid nanoparticle surface (LUV-TRAIL) resembling the physiological secretion of TRAIL as a trasmembrane protein inserted into the membrane of exosomes. We have already demonstrated that LUV-TRAIL shows an improved cytotoxic activity when compared to soluble recombinant TRAIL both in hematological malignancies and epithelial-derived cancers. In the present study, we have tested LUV-TRAIL in several human sarcoma tumor cell lines with different sensitivity to soluble recombinant TRAIL, finding that LUV-TRAIL was more efficient than soluble recombinant TRAIL. Moreover, combined treatment of LUV-TRAIL with distinct drugs proved to be especially effective, sensitizing even more resistant cell lines to TRAIL.


Assuntos
Apoptose , Lipídeos , Nanopartículas , Sarcoma/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Proteínas Recombinantes , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
6.
Nanotechnology ; 27(18): 185101, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001952

RESUMO

PURPOSE: Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. METHODS/PATIENTS: LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. RESULTS: LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. CONCLUSION: The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Nanopartículas/química , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Caspase 3/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Lipossomos , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/química
7.
Pediatr Res ; 78(6): 603-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26334989

RESUMO

BACKGROUND: Autoimmune lymphoproliferative syndrome (ALPS) is a primary immunodeficiency characterized by chronic lymphoproliferation, autoimmune manifestations, expansion of double-negative T-cells, and susceptibility to malignancies. Most cases of ALPS are caused by germline or somatic FAS mutations. We report the case of an ALPS patient due to a novel homozygous Fasligand gene mutation (ALPS-FASLG). METHODS: ALPS biomarkers were measured and FASLG mutation was identified. Functional characterization was carried out based on activation-induced cell death (AICD) and cytotoxicity assays. RESULTS: This report describes the cases of a patient who presented a severe form of ALPS-FASLG, and his brother who had died due to complications related to ALPS. Moreover, in another family, we present the first case of lymphoma in a patient with ALPS-FASLG. Functional studies showed defective Fasligand-mediated apoptosis, cytotoxicity, and AICD in T-cell blasts. Otherwise, expression of the FASLG gene and corresponding protein was normal, but the shedding of the Fasligand was impaired in T-cells. Additionally, analyzing Epstein-Barr virus (EBV)-transformed B-cells, our results indicate impaired AICD in ALPS-FASLG patients. CONCLUSION: Patients with autosomal recessive inheritance of ALPS-FASLG have a severe phenotype and a partial defect in AICD in T- and B-cell lines. The Fasligand could play a key role in immune surveillance preventing malignancy.


Assuntos
Síndrome Linfoproliferativa Autoimune/genética , Linfócitos B/virologia , Transformação Celular Viral , Citotoxicidade Imunológica , Proteína Ligante Fas/genética , Herpesvirus Humano 4/patogenicidade , Linfoma/genética , Mutação , Adulto , Apoptose , Síndrome Linfoproliferativa Autoimune/diagnóstico , Síndrome Linfoproliferativa Autoimune/tratamento farmacológico , Síndrome Linfoproliferativa Autoimune/imunologia , Linfócitos B/imunologia , Linfócitos B/patologia , Pré-Escolar , Consanguinidade , Análise Mutacional de DNA , Proteína Ligante Fas/imunologia , Feminino , Predisposição Genética para Doença , Células HEK293 , Homozigoto , Humanos , Lactente , Células Jurkat , Linfoma/imunologia , Linfoma/patologia , Masculino , Linhagem , Fenótipo , Linfócitos T/imunologia , Linfócitos T/patologia , Transfecção
9.
Front Immunol ; 15: 1289303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352878

RESUMO

Immunotherapy treatments aim to modulate the host's immune response to either mitigate it in inflammatory/autoimmune disease or enhance it against infection or cancer. Among different immunotherapies reaching clinical application during the last years, chimeric antigen receptor (CAR) immunotherapy has emerged as an effective treatment for cancer where different CAR T cells have already been approved. Yet their use against infectious diseases is an area still relatively poorly explored, albeit with tremendous potential for research and clinical application. Infectious diseases represent a global health challenge, with the escalating threat of antimicrobial resistance underscoring the need for alternative therapeutic approaches. This review aims to systematically evaluate the current applications of CAR immunotherapy in infectious diseases and discuss its potential for future applications. Notably, CAR cell therapies, initially developed for cancer treatment, are gaining recognition as potential remedies for infectious diseases. The review sheds light on significant progress in CAR T cell therapy directed at viral and opportunistic fungal infections.


Assuntos
Doenças Transmissíveis , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia , Imunoterapia Adotiva , Neoplasias/terapia , Doenças Transmissíveis/terapia
10.
Cancers (Basel) ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38539479

RESUMO

Immune checkpoint inhibitors have been proposed as the standard treatment for different stages of non-small-cell lung cancer in multiple indications. Not all patients benefit from these treatments, however, and certain patients develop immune-related adverse events. Although the search for predictors of response to these drugs is a major field of research, these issues have yet to be resolved. It has been postulated that microbiota could play a relevant role in conditioning the response to cancer treatments; however, the human factor of intestinal permeability also needs to be considered as it is closely related to the regulation of host-microbiota interaction. In this article, we analyzed the possible relationship between the response to immune checkpoint inhibitors and the onset of immune-related adverse events, gut microbiota status, and intestinal membrane permeability. In a pioneering step, we also measured short-chain fatty acid content in feces. Although the correlation analyses failed to identify predictive biomarkers, even when all variables were integrated, our patients' microbial gut ecosystems were rich and diverse, and the intestinal barrier's integrity was preserved. These results add new knowledge on the composition of microbiota and its correlation with barrier permeability and short-chain fatty acids and suggest that more studies are required before these potential biomarkers can be incorporated into the clinical management of patients via immune checkpoint inhibitor treatment.

11.
Mol Pharm ; 10(3): 893-904, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23331277

RESUMO

Human Apo2-ligand/TRAIL is a member of the TNF cytokine superfamily capable of inducing apoptosis on tumor cells while sparing normal cells. Besides its antitumor activity, Apo2L/TRAIL is also implicated in immune regulation. Apo2L/TRAIL is stored inside activated T cells in cytoplasmic multivesicular bodies and is physiologically released to the extracellular medium inserted in the internal membrane vesicles, known as exosomes. In this study we have generated artificial lipid vesicles coated with bioactive Apo2L/TRAIL, which resemble natural exosomes, to analyze their apoptosis-inducing ability on cell lines from hematological tumors. We have tethered Apo2L/TRAIL to lipid vesicles by using a novel Ni(2+)-(N-5-amino-1-carboxylpentyl)-iminodiacetic acid, NTA)-containing liposomal system. This lipidic framework (LUVs-Apo2L/TRAIL) greatly improves Apo2L/TRAIL activity, decreasing by around 14-fold the LC50 on the T-cell leukemia Jurkat. This increase in bioactivity correlated with the greater ability of LUVs-Apo2L/TRAIL to induce caspase-3 activation and is probably due to the increase in local concentration of Apo2L/TRAIL, improving its receptor cross-linking efficiency. More important, liposome-bound Apo2L/TRAIL overcame the resistance to soluble recombinant Apo2L/TRAIL exhibited by tumor cell mutants overexpressing Bcl-xL or by a Bax and Bak-defective Jurkat cell mutant (Jurkat-shBak) and are also effective against other hematologic tumor cells. Jurkat-Bcl-xL and Jurkat-shBak cells are resistant to most chemotherapeutic drugs currently used in cancer treatment, and their sensitivity to LUVs-Apo2L/TRAIL could have potential clinical applications.


Assuntos
Neoplasias Hematológicas/tratamento farmacológico , Lipossomos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo , Humanos , Leucócitos Mononucleares , Lipossomos/administração & dosagem , Ligante Indutor de Apoptose Relacionado a TNF/química , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
12.
J Clin Med ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675536

RESUMO

Cancer resistance to treatments is a challenge that researchers constantly seek to overcome. For instance, TNF-related apoptosis-inducing ligand (TRAIL) is a potential good prospect as an anti-cancer therapy, as it attacks tumor cells but not normal cells. However, treatments based in soluble TRAIL provided incomplete clinical results and diverse formulations have been developed to improve its bioactivity. In previous works, we generated a new TRAIL formulation based in its attachment to the surface of unilamellar nanoliposomes (LUV-TRAIL). This formulation greatly increased apoptosis in a wide selection of tumor cell types, albeit a few of them remained resistant. On the other hand, it has been described that a metabolic shift in cancer cells can also alter its sensitivity to other treatments. In this work, we sought to increase the sensitivity of several tumor cell types resistant to LUV-TRAIL by previous exposure to the metabolic drug dichloroacetate (DCA), which forces oxidative phosphorylation. Results showed that DCA + LUV-TRAIL had a synergistic effect on both lung adenocarcinoma A549, colorectal HT29, and breast cancer MCF7 cells. Despite DCA inducing intracellular changes in a cell-type specific way, the increase in cell death by apoptosis was clearly correlated with an increase in death receptor 5 (DR5) surface expression in all cell lines. Therefore, DCA-induced metabolic shift emerges as a suitable option to overcome TRAIL resistance in cancer cells.

13.
Jt Dis Relat Surg ; 34(2): 271-278, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37462629

RESUMO

OBJECTIVES: This study aims to assess the development of osteoarthritis (OA) in granzyme A- (gzmA) and B- (gzmB) and perforin- (perf) knockout mice. MATERIALS AND METHODS: A total of 75 male and female C57BL/6 (eight to nine-week-old) mice were allocated to: gzmA-deficient (gzmA-/-) (11 females, 8 males), gzmB-deficient (gzmB-/-) (9 females, 8 males), perf-deficient (perf-/-) (10 females, 9 males), and control group (10 females, 10 males). Osteoarthritis was induced in the right knee by instability of the meniscus medial ligament. Sham surgery was practiced in the left knee. Knee samples obtained eight weeks after surgery were stained (Safranin-O) and blindly scored in lateral and medial femur and tibia using the Osteoarthritis Research Society International scale (OARSI) (from Grade 0, cartilage intact to 6, deformation), (five stages from 0, no OA to 4, >50% surface involvement); OARSI score (Grade x Stage); and a semi-quantitative scale from Grade 0 (normal) to 6 (cartilage erosion >80%). RESULTS: Significantly higher values in all scales in the right knees compared to the left knees in male and female mice were observed (p<0.05). Males of all strains showed in the right knee higher values than females on all scales. Deficiency of perforin did not modify OA severity in any sex. The gzmA-/- females presented less degenerative changes than the other groups. CONCLUSION: Our study results show that sex plays an important role in the development of experimental OA in mice. Deficiency of gzmA can protect from the development of OA in female mice.


Assuntos
Osteoartrite , Animais , Feminino , Masculino , Camundongos , Cartilagem , Granzimas/genética , Camundongos Endogâmicos C57BL , Osteoartrite/genética , Perforina/genética
14.
Cancers (Basel) ; 15(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672279

RESUMO

(1) Despite the effectiveness of immune checkpoint inhibitors (ICIs) in lung cancer, there is a lack of knowledge about predictive biomarkers. The objective of our study is to analyze different subsets of T-lymphocytes and natural killer (NK) cells as predictive biomarkers in a cohort of patients with nonsmall cell lung cancer (NSCLC) treated with ICI. (2) This is an observational, prospective study with 55 NSCLC patients treated with ICI. A total of 43 T and NK cell subsets are analyzed in peripheral blood, including the main markers of exhaustion, differentiation, memory, activation, and inhibition. (3) Regarding the descriptive data, Granzyme B+CD4+ Treg lymphocytes stand out (median 17.4%), and within the NK populations, most patients presented cytotoxic NK cells (CD56+CD3-CD16+GranzymeB+; median 94.8%), and about half of them have highly differentiated adaptive-like NK cells (CD56+CD3-CD16+CD57+ (mean 59.8%). A statistically significant difference was observed between the expression of PD1 within the CD56bright NK cell subpopulation (CD56+CD3-CD16-PD-1+) (p = 0.047) and a better OS. (4) Circulating immune cell subpopulations are promising prognostic biomarkers for ICI. Pending on validation with a larger sample, here we provide an analysis of the major circulating T and NK cell subsets involved in cancer immunity, with promising results despite a small sample size.

15.
Sci Rep ; 13(1): 23061, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155275

RESUMO

Suboptimal vaccine response is a significant concern in patients with Inflammatory Bowel Disease (IBD) receiving biologic drugs. This single-center observational study involved 754 patients with IBD. In Phase I (October 2020-April 2021), 754 IBD participants who had not previously received the SARS-CoV-2 vaccine, underwent blood extraction to assess the seroprevalence of SARS-CoV-2 infection and IBD-related factors. Phase II (May 2021-October 2021) included a subgroup of 52 IBD participants with confirmed previous SARS-CoV-2 infection, who were studied for humoral and cellular response to the SARS-CoV-2 vaccine. In Phase I, treatment with anti-TNF was associated with lower rates of seroconversion (aOR 0.25 95% CI [0.10-0.61]). In Phase II, a significant increase in post-vaccination IgG levels was observed regardless of biologic treatment. However, patients treated with anti-TNF exhibited significantly lower IgG levels compared to those without IBD therapy (5.32 ± 2.47 vs. 7.99 ± 2.59 U/ml, p = 0.042). Following vaccination, a lymphocyte, monocyte, and NK cell activation pattern was observed, with no significant differences between patients receiving biologic drugs and those without IBD treatment. Despite lower seroprevalence and humoral response to the SARS-CoV-2 vaccine in patients treated with anti-TNF, the cellular response to the vaccine did not differ significantly from that patients without IBD therapy.


Assuntos
COVID-19 , Doenças Inflamatórias Intestinais , Humanos , Vacinas contra COVID-19 , Estudos Soroepidemiológicos , Inibidores do Fator de Necrose Tumoral , SARS-CoV-2 , Doenças Inflamatórias Intestinais/tratamento farmacológico , Vacinação , Imunoglobulina G
16.
Nanomaterials (Basel) ; 12(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335725

RESUMO

Worldwide antimicrobial resistance is partly caused by the overuse of antibiotics as growth promoters. Based on the known bactericidal effect of silver, a new material containing silver in a clay base was developed to be used as feed additive. An in vitro genotoxicity evaluation of this silver-kaolin clay formulation was conducted, which included the mouse lymphoma assay in L5178Y TK+/- cells and the micronucleus test in TK6 cells, following the principles of the OECD guidelines 490 and 487, respectively. As a complement, the standard and Fpg-modified comet assays for the evaluation of strand breaks, alkali labile sites and oxidative DNA damage were also performed in TK6 cells. The formulation was tested without metabolic activation after an exposure of 3 h and 24 h; its corresponding release in medium, after the continuous agitation of the silver-kaolin for 24 h was also evaluated. Under the conditions tested, the test compound did not produce gene mutations, chromosomal aberrations or DNA damage (i.e., strand breaks, alkali labile sites or oxidized bases). Considering the results obtained in the present study, the formulation seems to be a promising material to be used as antimicrobial in animal feed.

17.
Theranostics ; 12(1): 290-306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34987646

RESUMO

Coronavirus disease 2019 (COVID19), caused by SARS-CoV-2, is a complex disease, with a variety of clinical manifestations ranging from asymptomatic infection or mild cold-like symptoms to more severe cases requiring hospitalization and critical care. The most severe presentations seem to be related with a delayed, deregulated immune response leading to exacerbated inflammation and organ damage with close similarities to sepsis. Methods: In order to improve the understanding on the relation between host immune response and disease course, we have studied the differences in the cellular (monocytes, CD8+ T and NK cells) and soluble (cytokines, chemokines and immunoregulatory ligands) immune response in blood between Healthy Donors (HD), COVID19 and a group of patients with non-COVID19 respiratory tract infections (NON-COV-RTI). In addition, the immune response profile has been analyzed in COVID19 patients according to disease severity. Results: In comparison to HDs and patients with NON-COV-RTI, COVID19 patients show a heterogeneous immune response with the presence of both activated and exhausted CD8+ T and NK cells characterised by the expression of the immune checkpoint LAG3 and the presence of the adaptive NK cell subset. An increased frequency of adaptive NK cells and a reduction of NK cells expressing the activating receptors NKp30 and NKp46 correlated with disease severity. Although both activated and exhausted NK cells expressing LAG3 were increased in moderate/severe cases, unsupervised cell clustering analyses revealed a more complex scenario with single NK cells expressing more than one immune checkpoint (PD1, TIM3 and/or LAG3). A general increased level of inflammatory cytokines and chemokines was found in COVID19 patients, some of which like IL18, IL1RA, IL36B and IL31, IL2, IFNα and TNFα, CXCL10, CCL2 and CCL8 were able to differentiate between COVID19 and NON-COV-RTI and correlated with bad prognosis (IL2, TNFα, IL1RA, CCL2, CXCL10 and CXCL9). Notably, we found that soluble NKG2D ligands from the MIC and ULBPs families were increased in COVID19 compared to NON-COV-RTI and correlated with disease severity. Conclusions: Our results provide a detailed comprehensive analysis of the presence of activated and exhausted CD8+T, NK and monocyte cell subsets as well as extracellular inflammatory factors beyond cytokines/chemokines, specifically associated to COVID19. Importantly, multivariate analysis including clinical, demographical and immunological experimental variables have allowed us to reveal specific immune signatures to i) differentiate COVID19 from other infections and ii) predict disease severity and the risk of death.


Assuntos
COVID-19/sangue , COVID-19/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Linfócitos T CD8-Positivos/virologia , COVID-19/mortalidade , Estudos de Casos e Controles , Quimiocinas/sangue , Citocinas/sangue , Feminino , Hospitalização , Humanos , Células Matadoras Naturais/virologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Monócitos/virologia , Estudos Prospectivos , Infecções Respiratórias/sangue , Infecções Respiratórias/imunologia , Índice de Gravidade de Doença
18.
Arthritis Rheum ; 62(8): 2272-82, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20506326

RESUMO

OBJECTIVE: We previously observed that T lymphocytes present in synovial fluid (SF) from patients with rheumatoid arthritis (RA) were sensitive to APO2L/TRAIL. In addition, there was a drastic decrease in the amount of bioactive APO2L/TRAIL associated with exosomes in SF from RA patients. This study was undertaken to evaluate the effectiveness of bioactive APO2L/TRAIL conjugated with artificial lipid vesicles resembling natural exosomes as a treatment in a rabbit model of antigen-induced arthritis (AIA). METHODS: We used a novel Ni(2+)-(N-5-amino-1-carboxypentyl)-iminodiacetic acid)-containing liposomal system. APO2L/TRAIL bound to liposomes was intraarticularly injected into the knees of animals with AIA. One week after treatment, rabbits were killed, and arthritic synovial tissue was analyzed. RESULTS: Tethering APO2L/TRAIL to the liposome membrane increased its bioactivity and resulted in more effective treatment of AIA compared with soluble, unconjugated APO2L/TRAIL, with substantially reduced synovial hyperplasia and inflammation in rabbit knee joints. The results of biophysical studies suggested that the increased bioactivity of APO2L/TRAIL associated with liposomes was due to the increase in the local concentration of the recombinant protein, augmenting its receptor crosslinking potential, and not to conformational changes in the protein. In spite of this increase in bioactivity, the treatment lacked systemic toxicity and was not hepatotoxic. CONCLUSION: Our findings indicate that binding APO2L/TRAIL to the liposome membrane increases its bioactivity and results in effective treatment of AIA.


Assuntos
Artrite Experimental/terapia , Artrite Reumatoide/terapia , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Animais , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Citometria de Fluxo , Hiperplasia/metabolismo , Hiperplasia/terapia , Inflamação/metabolismo , Inflamação/terapia , Lipossomos/uso terapêutico , Coelhos , Membrana Sinovial/metabolismo , Resultado do Tratamento
19.
Antibiotics (Basel) ; 10(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34827213

RESUMO

According to the search for alternatives to replace antibiotics in animal production suggested in the antimicrobial resistance action plans around the world, the objective of this work was to evaluate the bactericidal effect of kaolin-silver nanomaterial for its possible inclusion as an additive in animal feed. The antibacterial activity of the C3 (kaolin-silver nanomaterial) product was tested against a wide spectrum of Gram-negative and Gram-positive bacteria (including multidrug resistant strains) by performing antibiograms, minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC), as well as growth inhibition curves against seven strains causing infections in animals. The C3 product generated inhibition halos in all the tested strains, and a higher activity against Gram-negative bacteria was found, with MBC values ranged from 7.8 µg/mL (P. aeruginosa) to 15.6 µg/mL (E. coli and Salmonella). In contrast, it was necessary to increase the concentration to 31.3 µg/mL or 250 µg/mL to eliminate 99.9% of the initial population of S. aureus ATCC 6538 and E. faecium ATCC 19434, respectively. Conversely, the inhibition growth curves showed a faster bactericidal activity against Gram-negative bacteria (between 2 and 4 h), while it took at least 24 h to observe a reduction in cell viability of S. aureus ATCC 6538. In short, this study shows that the kaolin-silver nanomaterials developed in the framework of the INTERREG POCTEFA EFA183/16/OUTBIOTICS project exhibit antibacterial activity against a wide spectrum of bacteria. However, additional studies on animal safety and environmental impact are necessary to evaluate the effectiveness of the proposed alternative in the context of One Health.

20.
Cancer Treat Res Commun ; 27: 100355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33770663

RESUMO

9-kDa granulysin is a protein expressed into the granules of human cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. It has been shown to exert cytolysis on microbes and tumors. We showed previously that 9-kDa granulysin exerted cell death by apoptosis in vitro on hematological tumor cell lines and also on cells from B-cell chronic lymphocytic leukemia (B-CLL) patients. In addition, we have shown the anti-tumor efficiency of granulysin as a single agent in two in vivo models of human tumor development in athymic mice, the MDA-MB-231 mammary adenocarcinoma and the NCI-H929 multiple myeloma, without signs of overt secondary effects by itself. In this work, we have tested recombinant 9-kDa granulysin in an in vivo and especially aggressive model of melanoma development, xenografted UACC62 cells in athymic mice. Recombinant granulysin was administered once UACC62-derived tumors were detectable and it substantially retarded the in vivo development of this aggressive tumor. We could also detect apoptosis induction and increased NK cell infiltration inside granulysin-treated tumor tissues. These observations are especially interesting given the possibility of treating melanoma by intra-tumor injection.


Assuntos
Antígenos de Diferenciação de Linfócitos T/uso terapêutico , Melanoma Experimental/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antígenos de Diferenciação de Linfócitos T/farmacologia , Apoptose/efeitos dos fármacos , Calreticulina/metabolismo , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais , Linfócitos do Interstício Tumoral , Masculino , Melanoma Experimental/patologia , Camundongos , Transplante de Neoplasias , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA