RESUMO
Data of gene expression levels across individuals, cell types, and disease states is expanding, yet our understanding of how expression levels impact phenotype is limited. Here, we present a massively parallel system for assaying the effect of gene expression levels on fitness in Saccharomyces cerevisiae by systematically altering the expression level of â¼100 genes at â¼100 distinct levels spanning a 500-fold range at high resolution. We show that the relationship between expression levels and growth is gene and environment specific and provides information on the function, stoichiometry, and interactions of genes. Wild-type expression levels in some conditions are not optimal for growth, and genes whose fitness is greatly affected by small changes in expression level tend to exhibit lower cell-to-cell variability in expression. Our study addresses a fundamental gap in understanding the functional significance of gene expression regulation and offers a framework for evaluating the phenotypic effects of expression variation.
Assuntos
Regulação Fúngica da Expressão Gênica , Interação Gene-Ambiente , Aptidão Genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Código de Barras de DNA Taxonômico , Biblioteca Gênica , Genes Fúngicos , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
Elevated postprandial blood glucose levels constitute a global epidemic and a major risk factor for prediabetes and type II diabetes, but existing dietary methods for controlling them have limited efficacy. Here, we continuously monitored week-long glucose levels in an 800-person cohort, measured responses to 46,898 meals, and found high variability in the response to identical meals, suggesting that universal dietary recommendations may have limited utility. We devised a machine-learning algorithm that integrates blood parameters, dietary habits, anthropometrics, physical activity, and gut microbiota measured in this cohort and showed that it accurately predicts personalized postprandial glycemic response to real-life meals. We validated these predictions in an independent 100-person cohort. Finally, a blinded randomized controlled dietary intervention based on this algorithm resulted in significantly lower postprandial responses and consistent alterations to gut microbiota configuration. Together, our results suggest that personalized diets may successfully modify elevated postprandial blood glucose and its metabolic consequences. VIDEO ABSTRACT.
Assuntos
Algoritmos , Glicemia/análise , Diabetes Mellitus Tipo 2/sangue , Período Pós-Prandial , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/microbiologia , Dieta para Diabéticos , Microbioma Gastrointestinal , Humanos , SmartphoneRESUMO
A variety of species of bacteria are known to colonize human tumours1-11, proliferate within them and modulate immune function, which ultimately affects the survival of patients with cancer and their responses to treatment12-14. However, it is not known whether antigens derived from intracellular bacteria are presented by the human leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, that were derived from 41 species of bacteria. We identified recurrent bacterial peptides in tumours from different patients, as well as in different tumours from the same patient. Our study reveals that peptides derived from intracellular bacteria can be presented by tumour cells and elicit immune reactivity, and thus provides insight into a mechanism by which bacteria influence activation of the immune system and responses to therapy.
Assuntos
Antígenos de Bactérias/análise , Antígenos de Bactérias/imunologia , Bactérias/imunologia , Antígenos HLA/imunologia , Melanoma/imunologia , Melanoma/microbiologia , Peptídeos/análise , Peptídeos/imunologia , Apresentação de Antígeno , Bactérias/classificação , Bactérias/genética , Linhagem Celular Tumoral , Técnicas de Cocultura , Antígenos HLA/análise , Humanos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/patologia , Metástase Neoplásica/imunologia , Filogenia , RNA Ribossômico 16S/genéticaRESUMO
The serum metabolome contains a plethora of biomarkers and causative agents of various diseases, some of which are endogenously produced and some that have been taken up from the environment1. The origins of specific compounds are known, including metabolites that are highly heritable2,3, or those that are influenced by the gut microbiome4, by lifestyle choices such as smoking5, or by diet6. However, the key determinants of most metabolites are still poorly understood. Here we measured the levels of 1,251 metabolites in serum samples from a unique and deeply phenotyped healthy human cohort of 491 individuals. We applied machine-learning algorithms to predict metabolite levels in held-out individuals on the basis of host genetics, gut microbiome, clinical parameters, diet, lifestyle and anthropometric measurements, and obtained statistically significant predictions for more than 76% of the profiled metabolites. Diet and microbiome had the strongest predictive power, and each explained hundreds of metabolites-in some cases, explaining more than 50% of the observed variance. We further validated microbiome-related predictions by showing a high replication rate in two geographically independent cohorts7,8 that were not available to us when we trained the algorithms. We used feature attribution analysis9 to reveal specific dietary and bacterial interactions. We further demonstrate that some of these interactions might be causal, as some metabolites that we predicted to be positively associated with bread were found to increase after a randomized clinical trial of bread intervention. Overall, our results reveal potential determinants of more than 800 metabolites, paving the way towards a mechanistic understanding of alterations in metabolites under different conditions and to designing interventions for manipulating the levels of circulating metabolites.
Assuntos
Dieta , Microbioma Gastrointestinal/fisiologia , Metaboloma/genética , Soro/metabolismo , Adulto , Pão , Estudos de Coortes , Feminino , Voluntários Saudáveis , Humanos , Estilo de Vida , Aprendizado de Máquina , Masculino , Metabolômica , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Oxigenases/genética , Padrões de Referência , Reprodutibilidade dos Testes , Estações do AnoRESUMO
The TP53 gene is frequently mutated in human cancer. Research has focused predominantly on six major "hotspot" codons, which account for only â¼30% of cancer-associated p53 mutations. To comprehensively characterize the consequences of the p53 mutation spectrum, we created a synthetically designed library and measured the functional impact of â¼10,000 DNA-binding domain (DBD) p53 variants in human cells in culture and in vivo. Our results highlight the differential outcome of distinct p53 mutations in human patients and elucidate the selective pressure driving p53 conservation throughout evolution. Furthermore, while loss of anti-proliferative functionality largely correlates with the occurrence of cancer-associated p53 mutations, we observe that selective gain-of-function may further favor particular mutants in vivo. Finally, when combined with additional acquired p53 mutations, seemingly neutral TP53 SNPs may modulate phenotypic outcome and, presumably, tumor progression.
Assuntos
Evolução Molecular , Biblioteca Gênica , Mutação , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Polimorfismo de Nucleotídeo Único , Domínios Proteicos , Proteína Supressora de Tumor p53/metabolismoRESUMO
Differences in the presence of even a few genes between otherwise identical bacterial strains may result in critical phenotypic differences. Here we systematically identify microbial genomic structural variants (SVs) and find them to be prevalent in the human gut microbiome across phyla and to replicate in different cohorts. SVs are enriched for CRISPR-associated and antibiotic-producing functions and depleted from housekeeping genes, suggesting that they have a role in microbial adaptation. We find multiple associations between SVs and host disease risk factors, many of which replicate in an independent cohort. Exploring genes that are clustered in the same SV, we uncover several possible mechanistic links between the microbiome and its host, including a region in Anaerostipes hadrus that encodes a composite inositol catabolism-butyrate biosynthesis pathway, the presence of which is associated with lower host metabolic disease risk. Overall, our results uncover a nascent layer of variability in the microbiome that is associated with microbial adaptation and host health.
Assuntos
Bactérias/genética , Suscetibilidade a Doenças/microbiologia , Microbioma Gastrointestinal/genética , Genes Bacterianos/genética , Variação Genética , Saúde , Interações entre Hospedeiro e Microrganismos/genética , Adaptação Fisiológica/genética , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Butiratos/metabolismo , Estudos de Coortes , Ecossistema , Eubacterium/genética , Eubacterium/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Inositol/metabolismo , Metagenômica , Viabilidade Microbiana/genética , Fatores de RiscoRESUMO
Precise gene expression patterns are established by transcription factor (TFs) binding to regulatory sequences. While these events occur in the context of chromatin, our understanding of how TF-nucleosome interplay affects gene expression is highly limited. Here, we present an assay for high-resolution measurements of both DNA occupancy and gene expression on large-scale libraries of systematically designed regulatory sequences. Our assay reveals occupancy patterns at the single-cell level. It provides an accurate quantification of the fraction of the population bound by a nucleosome and captures distinct, even adjacent, TF binding events. By applying this assay to over 1,500 promoter variants in yeast, we reveal pronounced differences in the dependency of TF activity on chromatin and classify TFs by their differential capacity to alter chromatin and promote expression. We further demonstrate how different regulatory sequences give rise to nucleosome-mediated TF collaborations that quantitatively account for the resulting expression.
Assuntos
Cromatina/metabolismo , DNA Fúngico/metabolismo , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Cromatina/genética , Biologia Computacional , DNA Fúngico/genética , Bases de Dados Genéticas , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Ensaios de Triagem em Larga Escala , Nucleossomos/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genéticaRESUMO
Human gut microbiome composition is shaped by multiple factors but the relative contribution of host genetics remains elusive. Here we examine genotype and microbiome data from 1,046 healthy individuals with several distinct ancestral origins who share a relatively common environment, and demonstrate that the gut microbiome is not significantly associated with genetic ancestry, and that host genetics have a minor role in determining microbiome composition. We show that, by contrast, there are significant similarities in the compositions of the microbiomes of genetically unrelated individuals who share a household, and that over 20% of the inter-person microbiome variability is associated with factors related to diet, drugs and anthropometric measurements. We further demonstrate that microbiome data significantly improve the prediction accuracy for many human traits, such as glucose and obesity measures, compared to models that use only host genetic and environmental data. These results suggest that microbiome alterations aimed at improving clinical outcomes may be carried out across diverse genetic backgrounds.
Assuntos
Dieta/estatística & dados numéricos , Meio Ambiente , Características da Família , Microbioma Gastrointestinal/genética , Estilo de Vida , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Interação Gene-Ambiente , Glucose/metabolismo , Voluntários Saudáveis , Hereditariedade/genética , Humanos , Israel , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , RNA Bacteriano/análise , RNA Bacteriano/genética , RNA Ribossômico 16S/análise , Reprodutibilidade dos Testes , Estudos em Gêmeos como Assunto , Gêmeos/genética , Adulto JovemRESUMO
OBJECTIVE: To explore the interplay between dietary modifications, microbiome composition and host metabolic responses in a dietary intervention setting of a personalised postprandial-targeting (PPT) diet versus a Mediterranean (MED) diet in pre-diabetes. DESIGN: In a 6-month dietary intervention, adults with pre-diabetes were randomly assigned to follow an MED or PPT diet (based on a machine-learning algorithm for predicting postprandial glucose responses). Data collected at baseline and 6 months from 200 participants who completed the intervention included: dietary data from self-recorded logging using a smartphone application, gut microbiome data from shotgun metagenomics sequencing of faecal samples, and clinical data from continuous glucose monitoring, blood biomarkers and anthropometrics. RESULTS: PPT diet induced more prominent changes to the gut microbiome composition, compared with MED diet, consistent with overall greater dietary modifications observed. Particularly, microbiome alpha-diversity increased significantly in PPT (p=0.007) but not in MED arm (p=0.18). Post hoc analysis of changes in multiple dietary features, including food-categories, nutrients and PPT-adherence score across the cohort, demonstrated significant associations between specific dietary changes and species-level changes in microbiome composition. Furthermore, using causal mediation analysis we detect nine microbial species that partially mediate the association between specific dietary changes and clinical outcomes, including three species (from Bacteroidales, Lachnospiraceae, Oscillospirales orders) that mediate the association between PPT-adherence score and clinical outcomes of hemoglobin A1c (HbA1c), high-density lipoprotein cholesterol (HDL-C) and triglycerides. Finally, using machine-learning models trained on dietary changes and baseline clinical data, we predict personalised metabolic responses to dietary modifications and assess features importance for clinical improvement in cardiometabolic markers of blood lipids, glycaemic control and body weight. CONCLUSIONS: Our findings support the role of gut microbiome in modulating the effects of dietary modifications on cardiometabolic outcomes, and advance the concept of precision nutrition strategies for reducing comorbidities in pre-diabetes. TRIAL REGISTRATION NUMBER: NCT03222791.
Assuntos
Doenças Cardiovasculares , Dieta Mediterrânea , Microbioma Gastrointestinal , Estado Pré-Diabético , Adulto , Humanos , Automonitorização da Glicemia , Glicemia/metabolismo , DietaRESUMO
BACKGROUND: Dietary modifications are crucial for managing newly diagnosed type 2 diabetes mellitus (T2DM) and preventing its health complications, but many patients fail to achieve clinical goals with diet alone. We sought to evaluate the clinical effects of a personalized postprandial-targeting (PPT) diet on glycemic control and metabolic health in individuals with newly diagnosed T2DM as compared to the commonly recommended Mediterranean-style (MED) diet. METHODS: We enrolled 23 adults with newly diagnosed T2DM (aged 53.5 ± 8.9 years, 48% males) for a randomized crossover trial of two 2-week-long dietary interventions. Participants were blinded to their assignment to one of the two sequence groups: either PPT-MED or MED-PPT diets. The PPT diet relies on a machine learning algorithm that integrates clinical and microbiome features to predict personal postprandial glucose responses (PPGR). We further evaluated the long-term effects of PPT diet on glycemic control and metabolic health by an additional 6-month PPT intervention (n = 16). Participants were connected to continuous glucose monitoring (CGM) throughout the study and self-recorded dietary intake using a smartphone application. RESULTS: In the crossover intervention, the PPT diet lead to significant lower levels of CGM-based measures as compared to the MED diet, including average PPGR (mean difference between diets, - 19.8 ± 16.3 mg/dl × h, p < 0.001), mean glucose (mean difference between diets, - 7.8 ± 5.5 mg/dl, p < 0.001), and daily time of glucose levels > 140 mg/dl (mean difference between diets, - 2.42 ± 1.7 h/day, p < 0.001). Blood fructosamine also decreased significantly more during PPT compared to MED intervention (mean change difference between diets, - 16.4 ± 37 µmol/dl, p < 0.0001). At the end of 6 months, the PPT intervention leads to significant improvements in multiple metabolic health parameters, among them HbA1c (mean ± SD, - 0.39 ± 0.48%, p < 0.001), fasting glucose (- 16.4 ± 24.2 mg/dl, p = 0.02) and triglycerides (- 49 ± 46 mg/dl, p < 0.001). Importantly, 61% of the participants exhibited diabetes remission, as measured by HbA1c < 6.5%. Finally, some clinical improvements were significantly associated with gut microbiome changes per person. CONCLUSION: In this crossover trial in subjects with newly diagnosed T2DM, a PPT diet improved CGM-based glycemic measures significantly more than a Mediterranean-style MED diet. Additional 6-month PPT intervention further improved glycemic control and metabolic health parameters, supporting the clinical efficacy of this approach. TRIAL REGISTRATION: ClinicalTrials.gov number, NCT01892956.
Assuntos
Diabetes Mellitus Tipo 2 , Dieta Mediterrânea , Adulto , Glicemia/metabolismo , Automonitorização da Glicemia , Diabetes Mellitus Tipo 2/diagnóstico , Feminino , Controle Glicêmico , Humanos , Masculino , Pessoa de Meia-Idade , Projetos PilotoRESUMO
The 10 K is a large-scale prospective longitudinal cohort and biobank that was established in Israel. The primary aims of the study include development of prediction models for disease onset and progression and identification of novel molecular markers with a diagnostic, prognostic and therapeutic value. The recruitment was initiated in 2018 and is expected to complete in 2021. Between 28/01/2019 and 13/12/2020, 4,629 from the expected 10,000 participants were recruited (46 %). Follow-up visits are scheduled every year for a total of 25 years. The cohort includes individuals between the ages of 40 and 70 years. Predefined medical conditions were determined as exclusions. Information collected at baseline includes medical history, lifestyle and nutritional habits, vital signs, anthropometrics, blood tests results, Electrocardiography, Ankle-brachial pressure index (ABI), liver US and Dual-energy X-ray absorptiometry (DXA) tests. Molecular profiling includes transcriptome, proteome, gut and oral microbiome, metabolome and immune system profiling. Continuous measurements include glucose levels using a continuous glucose monitoring device for 2 weeks and sleep monitoring by a home sleep apnea test device for 3 nights. Blood and stool samples are collected and stored at - 80 °C in a storage facility for future research. Linkage is being established with national disease registries.
Assuntos
Automonitorização da Glicemia , Glicemia , Adulto , Idoso , Humanos , Israel/epidemiologia , Estudos Longitudinais , Pessoa de Meia-Idade , Estudos ProspectivosRESUMO
Transcription factors (TFs) are key mediators that propagate extracellular and intracellular signals through to changes in gene expression profiles. However, the rules by which promoters decode the amount of active TF into target gene expression are not well understood. To determine the mapping between promoter DNA sequence, TF concentration, and gene expression output, we have conducted in budding yeast a large-scale measurement of the activity of thousands of designed promoters at six different levels of TF. We observe that maximum promoter activity is determined by TF concentration and not by the number of binding sites. Surprisingly, the addition of an activator site often reduces expression. A thermodynamic model that incorporates competition between neighboring binding sites for a local pool of TF molecules explains this behavior and accurately predicts both absolute expression and the amount by which addition of a site increases or reduces expression. Taken together, our findings support a model in which neighboring binding sites interact competitively when TF is limiting but otherwise act additively.
Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Sequência de Bases , Sítios de Ligação , Imunoprecipitação da Cromatina , Redes Reguladoras de Genes/genética , Saccharomyces cerevisiae/genéticaRESUMO
Age-related macular degeneration (AMD) is the major cause of blindness in developed nations. AMD is characterized by retinal pigmented epithelial (RPE) cell dysfunction and loss of photoreceptor cells. Epidemiologic studies indicate important contributions of dietary patterns to the risk for AMD, but the mechanisms relating diet to disease remain unclear. Here we investigate the effect on AMD of isocaloric diets that differ only in the type of dietary carbohydrate in a wild-type aged-mouse model. The consumption of a high-glycemia (HG) diet resulted in many AMD features (AMDf), including RPE hypopigmentation and atrophy, lipofuscin accumulation, and photoreceptor degeneration, whereas consumption of the lower-glycemia (LG) diet did not. Critically, switching from the HG to the LG diet late in life arrested or reversed AMDf. LG diets limited the accumulation of advanced glycation end products, long-chain polyunsaturated lipids, and their peroxidation end-products and increased C3-carnitine in retina, plasma, or urine. Untargeted metabolomics revealed microbial cometabolites, particularly serotonin, as protective against AMDf. Gut microbiota were responsive to diet, and we identified microbiota in the Clostridiales order as being associated with AMDf and the HG diet, whereas protection from AMDf was associated with the Bacteroidales order and the LG diet. Network analysis revealed a nexus of metabolites and microbiota that appear to act within a gut-retina axis to protect against diet- and age-induced AMDf. The findings indicate a functional interaction between dietary carbohydrates, the metabolome, including microbial cometabolites, and AMDf. Our studies suggest a simple dietary intervention that may be useful in patients to arrest AMD.
Assuntos
Glicemia/metabolismo , Microbioma Gastrointestinal/fisiologia , Índice Glicêmico/fisiologia , Degeneração Macular/metabolismo , Retina/metabolismo , Animais , Produtos Finais de Glicação Avançada/metabolismo , Metaboloma/fisiologia , Metabolômica , CamundongosRESUMO
The core promoter is the regulatory sequence to which RNA polymerase is recruited and where it acts to initiate transcription. Here, we present the first comprehensive study of yeast core promoters, providing massively parallel measurements of core promoter activity and of TSS locations and relative usage for thousands of native and designed sequences. We found core promoter activity to be highly correlated to the activity of the entire promoter and that sequence variation in different core promoter regions substantially tunes its activity in a predictable way. We also show that location, orientation, and flanking bases critically affect TATA element function, that transcription initiation in highly active core promoters is focused within a narrow region, that poly(dA:dT) orientation has a functional consequence at the 3' end of promoters, and that orthologous core promoters across yeast species have conserved activities. Our results demonstrate the importance of core promoters in the quantitative study of gene regulation.
Assuntos
Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Leveduras/genética , Genômica , TATA Box , Sítio de Iniciação de Transcrição , Ativação TranscricionalRESUMO
The 3'end genomic region encodes a wide range of regulatory process including mRNA stability, 3' end processing and translation. Here, we systematically investigate the sequence determinants of 3' end mediated expression control by measuring the effect of 13,000 designed 3' end sequence variants on constitutive expression levels in yeast. By including a high resolution scanning mutagenesis of more than 200 native 3' end sequences in this designed set, we found that most mutations had only a mild effect on expression, and that the vast majority (~90%) of strongly effecting mutations localized to a single positive TA-rich element, similar to a previously described 3' end processing efficiency element, and resulted in up to ten-fold decrease in expression. Measurements of 3' UTR lengths revealed that these mutations result in mRNAs with aberrantly long 3'UTRs, confirming the role for this element in 3' end processing. Interestingly, we found that other sequence elements that were previously described in the literature to be part of the polyadenylation signal had a minor effect on expression. We further characterize the sequence specificities of the TA-rich element using additional synthetic 3' end sequences and show that its activity is sensitive to single base pair mutations and strongly depends on the A/T content of the surrounding sequences. Finally, using a computational model, we show that the strength of this element in native 3' end sequences can explain some of their measured expression variability (R = 0.41). Together, our results emphasize the importance of efficient 3' end processing for endogenous protein levels and contribute to an improved understanding of the sequence elements involved in this process.
Assuntos
Regiões 3' não Traduzidas , Regulação Fúngica da Expressão Gênica , Leveduras/genética , Genoma Fúngico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Leveduras/metabolismoRESUMO
Recent studies have shown a surprising phenomenon, whereby orthologous regulatory regions from different species drive similar expression levels despite being highly diverged in sequence. Here, we investigated this phenomenon by genomically integrating hundreds of ribosomal protein (RP) promoters from nine different yeast species into S. cerevisiae and accurately measuring their activity. We found that orthologous RP promoters have extreme expression conservation even across evolutionarily distinct yeast species. Notably, our measurements reveal two distinct mechanisms that underlie this conservation and which act in different regions of the promoter. In the core promoter region, we found compensatory changes, whereby effects of sequence variations in one part of the core promoter were reversed by variations in another part. In contrast, we observed robustness in Rap1 transcription factor binding sites, whereby significant sequence variations had little effect on promoter activity. Finally, cases in which orthologous promoter activities were not conserved could largely be explained by the sequence variation within the core promoter. Together, our results provide novel insights into the mechanisms by which expression is conserved throughout evolution across diverged promoter sequences.
Assuntos
Regiões Promotoras Genéticas , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Sítios de Ligação , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Variação Genética , Mutação , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Coordinate regulation of ribosomal protein (RP) genes is key for controlling cell growth. In yeast, it is unclear how this regulation achieves the required equimolar amounts of the different RP components, given that some RP genes exist in duplicate copies, while others have only one copy. Here, we tested whether the solution to this challenge is partly encoded within the DNA sequence of the RP promoters, by fusing 110 different RP promoters to a fluorescent gene reporter, allowing us to robustly detect differences in their promoter activities that are as small as ~10%. We found that single-copy RP promoters have significantly higher activities, suggesting that proper RP stoichiometry is indeed partly encoded within the RP promoters. Notably, we also partially uncovered how this regulation is encoded by finding that RP promoters with higher activity have more nucleosome-disfavoring sequences and characteristic spatial organizations of these sequences and of binding sites for key RP regulators. Mutations in these elements result in a significant decrease of RP promoter activity. Thus, our results suggest that intrinsic (DNA-dependent) nucleosome organization may be a key mechanism by which genomes encode biologically meaningful promoter activities. Our approach can readily be applied to uncover how transcriptional programs of other promoters are encoded.
Assuntos
Dosagem de Genes/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Genoma Fúngico/fisiologia , Proteínas Ribossômicas/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Most genes change expression levels across conditions, but it is unclear which of these changes represents specific regulation and what determines their quantitative degree. Here, we accurately measured activities of ~900 S. cerevisiae and ~1800 E. coli promoters using fluorescent reporters. We show that in both organisms 60-90% of promoters change their expression between conditions by a constant global scaling factor that depends only on the conditions and not on the promoter's identity. Quantifying such global effects allows precise characterization of specific regulation-promoters deviating from the global scale line. These are organized into few functionally related groups that also adhere to scale lines and preserve their relative activities across conditions. Thus, only several scaling factors suffice to accurately describe genome-wide expression profiles across conditions. We present a parameter-free passive resource allocation model that quantitatively accounts for the global scaling factors. It suggests that many changes in expression across conditions result from global effects and not specific regulation, and provides means for quantitative interpretation of expression profiles.