RESUMO
PURPOSE: The aim of this study was to explore the alternations regarding the HMGB1 and TLR4/NF-κB signaling pathway in juvenile rats with febrile seizure (FS). MATERIALS AND METHODS: During the animal modeling of the FS, seizures were triggered every four days by hot water (45 °C), and repeated ten times. After forty days' modeling, rats were divided into different groups according to the degree of seizure (FS (0) - FS (V)). Reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the mRNA expressions of the HMGB1, TLR4 and NF-κB in the hippocampus, while Western-blot (WB) and immunofluorescence (IF) were employed to assess protein expressions. The enzyme-linked immunosorbent assay (ELISA) was used for analyzing the protein expressions in peripheral blood. RESULTS: The mRNA levels of the HMGB1, TLR4 and NF-κB in the hippocampus of both FS (V) and FS (IV) groups were significantly higher than WT, while there was no difference between FS (III) and WT. Concerning protein expressions, increased levels of the HMGB1, TLR4, and NF-κB in FS (V) were observed with a good consistency between the WB and IF, while no significant upregulation was shown in FS (IV). The ELISA results showed that the significance of the augmented proteins between the FS (V) and WT were smaller in the serum than the hippocampus. CONCLUSIONS: Our study shows seizure degree-related upregulations of HMGB1 and TLR4/NF-κB signaling pathway both in hippocampus and serum of juvenile rats with FS, suggesting the involvement of TLR/NF-κB pathway in inflammation promoted by HMGB1 during FS.
RESUMO
Glossopharyngeal neuralgia (GPN) is an uncommon facial pain syndrome and is characterized by paroxysms of excruciating pain in the distributions of the auricular and pharyngeal branches of cranial nerves IX and X. Glossopharyngeal neuralgia characterized by otalgia alone is rare. Herein, the authors analyzed 2 patients with GPN with otalgia as the main clinical manifestation. The clinical features and prognosis of this rare group of patients with GPN were discussed. They both presented with paroxysmal pain in the external auditory meatus and preoperative magnetic resonance imaging suggested the vertebral artery were closely related to the glossopharyngeal nerves. In both patients, compression of the glossopharyngeal nerve was confirmed during microvascular decompression, and the symptoms were relieved immediately after surgery. At 11 to 15 months follow-up, there was no recurrence of pain. A variety of reasons can cause otalgia. The possibility of GPN is a clinical concern in patients with otalgia as the main complaint. The authors think the involvement of the glossopharyngeal nerve fibers in the tympanic plexus via Jacobson nerve may provide an important anatomic basis for GPN with predominant otalgia. Surface anesthesia test of the pharynx and preoperative magnetic resonance imaging is helpful for diagnosis. Microvascular decompression is effective in the treatment of GPN with predominant otalgia.
Assuntos
Doenças do Nervo Glossofaríngeo , Cirurgia de Descompressão Microvascular , Humanos , Estudos Retrospectivos , Dor de Orelha/diagnóstico , Dor de Orelha/etiologia , Doenças do Nervo Glossofaríngeo/diagnóstico por imagem , Doenças do Nervo Glossofaríngeo/cirurgia , Nervo Glossofaríngeo/cirurgia , Dor/etiologia , Cirurgia de Descompressão Microvascular/efeitos adversosRESUMO
Concussions sustained while playing sports are a prominent cause of mild traumatic brain injury (mTBI), which is prevalent among teenagers. The early and intermediate stages of mild traumatic brain injury (mTBI) can be characterized by inflammation, neurodegeneration, and brain tissue edema, which can lead to permanent brain damage. The present study investigated the therapeutic effects of triptolide in mTBI and brain damage recovery. After building mTBI model in male rat, triptolide administrated daily for 1 week in the treated group. On day 3 and day 7 of administration, hippocampus tissues were collected to evaluate inflammation and autophagy in the brain. The expressions of inflammatory factors interleukin (IL)-1ß and tumor necrosis factor-alpha in serum were downregulated, while IL-10 expression was upregulated when compared with the mTBI group on day 3 and day 7. The expression of IL-10 on day 7 was higher than on day 3. Quantitative polymerase chain reaction (qPCR) analysis of inflammatory-related factors (i.e., Il-1ß and nuclear factor-κB (Nf-κb), and western blot as well as immunofluorescence staining of autophagy-related proteins (i.e., LC3B) and aquaporin (AQP 4) showed lower expression on day 3 and day 7 in the triptolide-treated group. Moreover, NeuN immunostaining, and hematoxylin and eosin (HE) staining for hippocampus region revealed that the triptolide-treated group showed a decrease in damaged cells. Our findings emphasize the effectiveness of triptolide therapy after mild traumatic brain injury via modulating autophagy, attenuating inflammation and reduces edema by decreasing AQP 4 expression.
RESUMO
Inflammatory injury following ischemia-reperfusion (I/R) severely limits the efficacy of stroke treatment. Edaravone dexborneol (C.EDA) has been shown to reduce inflammation following a cerebral hemorrhage. However, the precise anti-inflammatory mechanism of C.EDA is unknown. In this study, we investigated whether C.EDA provides neuroprotection after I/R in rats, as well as the potential mechanisms involved. A middle cerebral artery occlusion/reperfusion (I/R) model was created using Sprague-Dawley rats. The blood flow of the central cerebral artery was monitored by a laser speckle imaging system. The neurological score was used to assess behavioral improvement. Cerebral infarction volume was measured by TTC staining. And the integrity of the blood-brain barrier was detected by Evan's blue staining. The expression of the nuclear factor kappa-B (NF-κB)/ the NOD-like receptor protein (NLRP3) inflammasome signal pathway and microglia polarization were detected by immunofluorescence and Western blotting. The cerebral blood flow ratio indicates that the cerebral I/R model was successfully established. After reperfusion for 72 h, the improvement of neurological scores, infarct volume reduction, and integrity of the blood-brain barrier was observed in I/R rats with C.EDA treatment. Meanwhile, the immunofluorescence result showed that the expression of iNOS, NLRP3, and NF-κB protein was decreased and the level of Arg1 was increased. Western blot analysis showed that the expression of NF-κB/NLRP3 signal pathway-related protein was decreased. In conclusion, this study indicates that C.EDA alleviates I/R injury by blocking the activation of the NLRP3 inflammasome and regulating the polarization of M1/M2 microglia via the NF-κB signal pathway.
Assuntos
NF-kappa B , Traumatismo por Reperfusão , Ratos , Animais , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Edaravone/farmacologia , Ratos Sprague-Dawley , Proteínas NLR , Transdução de Sinais/fisiologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismoRESUMO
Spontaneously hypertensive rats (SHR) are the most common animal model used to study attention deficit hyperactivity disorder (ADHD). The purpose of this study was to look at the impact of neuroinflammation and autophagy on blood-brain barrier function in the prefrontal cortex and hippocampus of ADHD rats. The rats were separated into three groups: juvenile SHR (6 weeks), mature SHR (12 weeks), and comparable age WKY groups. An open-field test was used to assess rats' ability to move on their own. Immunofluorescence was used to detect the Iba1-immunopositive microglia, ZO-1 and TNF-α. Meanwhile, the expression of p62, Beclin-1, LC3B, and MMP9, MMP2, TNF-α, ZO-1, and occludin were detected by Western blot. The results have shown that Iba1-immunopositive microglia and TNF-α protein in the brain of SHR rats were significantly increased. Moreover, autophagy of cells and the level of MMP2 and MPP9 in the prefrontal cortex and hippocampus increased in SHR rats. In addition, the expression of ZO-1 and occludin was decreased in SHR rats. To sum up, the increase of neuroinflammation and excessive autophagy were essential factors for the damage of blood-brain barrier structure and function.
RESUMO
Early brain injury (EBI) refers to a series of pathophysiological brain lesions that occur within 72 hr after subarachnoid hemorrhage (SAH), which is an extremely crucial factor in the poor prognosis of patients. In EBI, ferroptosis has been proven to cause neuronal death. Quercetin (QCT) is effective in deactivating reactive oxygen species (ROS), inhibiting lipid peroxidation, and even chelating iron, but its role in SAH remains unclear. In this study, the mortality rate, severity grade of SAH, brain water content (BWC), blood-brain barrier permeability, and neurological function of the rats were detected. Moreover, mitochondrial morphology in cortical neurons were observed and their sizes were subsequently quantified. The levels of lipid peroxidation on glutathione and malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) were determined, whereas the protein expressions of glutathione peroxidase 4 (GPX4), SLC7A11 (xCT), transferrin receptor 1 (TfR1), and ferroportin-1 (FPN1) were analyzed by western immunoblotting. The neurodegeneration involved in EBI was investigated by fluoro-Jade C staining, while iron staining was utilized to measure iron content. Our results showed that inhibition of ferroptosis by QCT could suppress EBI and improve neurological function in SAH rats. QCT increased the expression levels of GPX4, xCT, and FPN1, while downregulated TfR1, and exerted protective effects on neurons as well as alleviated iron accumulation and lipid peroxidation in the cortex of SAH rats. In conclusion, our study revealed that QCT might alleviate the EBI by inhibiting ferroptosis in SAH rats.
Assuntos
Lesões Encefálicas , Ferroptose , Hemorragia Subaracnóidea , Ratos , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , FerroRESUMO
Post-traumatic stress disorder is a major public health problem due to its frequency, chronicity, and disability that impact daily life. Studies have evidenced that the activation/inhibition of autophagy and excessive activation of microglia have a relationship with PTSD. For this purpose, C57BL/6 mice were employed to establish the post-traumatic stress disorder pathology mice model by conditioned fear and single prolonged stress (CF + SPS). Fluoxetine and PLX3397 were administered. PTSD-like behaviors were alleviated following fluoxetine treatment, evidenced via open field and conditioned fear test. Autophagy-associated proteins were upregulated, and inflammation factors were reduced after fluoxetine treatment. Microglia depletion mice showed a lower inflammatory level. In conclusion, fluoxetine can promote autophagy and inhibit neuroinflammation in mice model of PTSD, providing a theoretical basis for fluoxetine in treating PTSD.
Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Autofagia , Modelos Animais de Doenças , Fluoxetina/farmacologia , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Transtornos de Estresse Pós-Traumáticos/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológicoRESUMO
Attention deficit hyperactivity disorder (ADHD) has a complex etiology, and its specific causal factors remain to be elucidated. Aberration of nitric oxide synthase (nNOS) and inflammation, together with astrocytic and microglial cells have been continually associated with several neurological disorders, including ADHD. Using spontaneously hypertensive rat (SHR), we investigated the changes in nNOS, inflammatory, microglial and astrocytic markers in the frontal cortex and hippocampus at three different ages: onset of hypertension stage (i.e., 6 weeks after birth of SHR), established hypertension stage (i.e., 12 weeks after birth of SHR) and senescent stage (i.e., 12 months after birth of SHR), and compared with its age-matched normotensive control, Wistar-Kyoto (WKY) rats. A significant upregulation of Iba-1 expression in the senescent stage of SHR was observed. Further, we observed an upregulated nNOS expression in both onset and established stages of SHR, and a downregulated nNOS in the senescent stage. Our study showed an age-related increment of astrogliosis in the cortex and hippocampi of aged SHR. On the basis of our results, alterations in the nNOS and Iba-1 expressions, as well as age-related astrogliosis, may contribute to ADHD pathogenesis.
RESUMO
BACKGROUND: A blockage in a blood vessel can cause reduced blood flow to the brain, which eventually leads to the death of surrounding tissue. Several studies have attempted to develop an effective intervention to reverse this process and improve the health status of affected individuals. Due to its indirect effect on cellular functions and metabolism, the hypoxia-inducible factor (HIF-1α) protein has been proposed as a promising transcription factor in the treatment of stroke. PURPOSE: The current study aims to explore the relation between HIF-1 α and thymoquinone (TQ) in the attenuation of ischemic brain damage and the possible mechanism of this relation to reduce cell death. METHODS: For this purpose, dimethyloxallyl glycine (DMOG), 8 mg/kg, Acriflavine (ACF), 1.5 mg/kg, and both combined with TQ (5 mg/kg) were assessed. Male C57 mice were used to establish an ischemic stroke model by using endothelin-1 (ET-1) (400 pmole/µl) intra- cranial injection. The ultrastructure alterations of neuronal soma, axons, and mitochondria after stroke and treatment were well addressed. Besides, the expression levels of VEGF, HIF-1α, Nrf2, and HO-1 were evaluated. Meanwhile, apoptosis and autophagy-related proteins were also investigated. RESULTS: Treatment of ischemic stroke by TQ can activate the HIF-1α pathway and its downstream genes such as VEGF, TrkB, and PI3K, which in turn enhance angiogenesis and neurogenesis. Our study revealed that TQ has the same effect as DMOG to activate HIF-1 α and can improve motor dysfunction after ischemic stroke. Further, we demonstrated that both TQ and DMOG effectively attenuate the organelle's damage following ischemic stroke, which was confirmed by the cryogenic transmission electron microscope. The synergistic effect of TQ and DMOG may lead to a chemo-modulation action in the autophagy process after stroke onset and this result is validated by the western blot and rt-qPCR techniques. CONCLUSION: Our finding revealed the potential role of TQ as a HIF-1 α activator to reduce cell death, modulate autophagy and decrease the infarct volume after ischemic stroke onset. The neuroprotective effect of TQ is achieved by decreasing the inflammation and increasing angiogenesis as well as neurogenesis via induction of the HIF-1α-VEGF/Nrf2-HO-1-TrkB-PI3K pathway.
Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Benzoquinonas , Encéfalo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Neovascularização Patológica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
RATIONALE: Ventriculoperitoneal shunt (VPS) is the most common treatment for idiopathic normal pressure hydrocephalus, a subtype of hydrocephalus characterized by gait disturbance, dementia, and urinary incontinence. However, while the malfunction of VPS is reported at a high rate, the involvement of chronic cholecystitis in shunt malfunction is rare. PATIENT CONCERNS: A 73-year-old woman with idiopathic normal pressure hydrocephalus who received a VPS but subsequently developed chronic cholecystitis. The patient suffered from drowsiness and was unable to walk. Her family found that she presented with poor appetite and was bloated. DIAGNOSES: Chronic cholecystitis was confirmed through abdominal computed tomography, which showed a swollen, and enlarged gallbladder, and flatulence. A head computed tomography scan indicated hydrocephalus with enlarged ventricular system and paraventricular edema. INTERVENTIONS: Laparoscopic cholecystectomy was performed successfully, requiring no further shunt manipulation. OUTCOMES: The patient's memory and cognitive ability were slightly impaired without a positive sign in the abdomen. No catheter or abdominal infection signs were observed during the following 3 months of follow-up. CONCLUSION: To the best of our knowledge, this report is the first to reveal that shunt malfunction may result from chronic cholecystitis, which induced the presently observed intra-abdominal hypertension.