Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(33): e2401109121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116136

RESUMO

Na5YSi4O12 (NYSO) is demonstrated as a promising electrolyte with high ionic conductivity and low activation energy for practical use in solid Na-ion batteries. Solid-state NMR was employed to identify the six types of coordination of Na+ ions and migration pathway, which is vital to master working mechanism and enhance performance. The assignment of each sodium site is clearly determined from high-quality 23Na NMR spectra by the aid of Density Functional Theory calculation. Well-resolved 23Na exchangespectroscopy and electrochemical tracer exchange spectra provide the first experimental evidence to show the existence of ionic exchange between sodium at Na5 and Na6 sites, revealing that Na transport route is possibly along three-dimensional chain of open channel-Na4-open channel. Variable-temperature NMR relaxometry is developed to evaluate Na jump rates and self-diffusion coefficient to probe the sodium-ion dynamics in NYSO. Furthermore, NYSO works well as a dual ion conductor in Na and Li metal batteries with Na3V2(PO4)3 and LiFePO4 as cathodes, respectively.

2.
J Am Chem Soc ; 146(1): 460-467, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109256

RESUMO

Dielectric ceramic capacitors with high recoverable energy density (Wrec) and efficiency (η) are of great significance in advanced electronic devices. However, it remains a challenge to achieve high Wrec and η parameters simultaneously. Herein, based on density functional theory calculations and local structure analysis, the feasibility of developing the aforementioned capacitors is demonstrated by considering Bi0.25Na0.25Ba0.5TiO3 (BNT-50BT) as a matrix material with large local polarization and structural distortion. Remarkable Wrec and η of 16.21 J/cm3 and 90.5% have been achieved in Bi0.25Na0.25Ba0.5Ti0.92Hf0.08O3 via simple chemical modification, which is the highest Wrec value among reported bulk ceramics with η greater than 90%. The examination results of local structures at lattice and atomic scales indicate that the disorderly polarization distribution and small nanoregion (∼3 nm) lead to low hysteresis and high efficiency. In turn, the drastic increase in local polarization activated via the ultrahigh electric field (80 kV/mm) leads to large polarization and superior energy storage density. Therefore, this study emphasizes that chemical design should be established on a clear understanding of the performance-related local structure to enable a targeted regulation of high-performance systems.

3.
Inorg Chem ; 63(38): 17727-17739, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39262154

RESUMO

Ruddlesden-Popper (RP)-structured materials based on transition metals with a variable valence, such as Fe, Mn, Ni, and so on, have been well documented for their potential of being used as electrodes in solid-oxide fuel cells. However, RP materials with pure or dominant ionic conduction are rare. Here, a series of Zr-based RP materials Sr3Zr2-xMxO7-0.5x (M = Ga, Y, In) with electrical conductivity as high as 3.25 × 10-3 S cm-1 at 900 °C in air was reported, which represents the highest conductivity for the Zr-based RP materials and is comparable to that of the recently reported In-based RP oxide-ion conductors, such as NdBaInO4-based and La2BaIn2O7-based materials. Under low oxygen partial pressure (pO2), the doped samples show pure ionic conducting behaviors without n-type electronic conductivity. The defect formation energies, local structure around the oxygen vacancies, and oxide-ion-conducting mechanism of the acceptor-doped Sr3Zr2O7-based materials were studied for the first time. The results revealed a two-dimensional oxide ion migration characteristic within the perovskite slabs. This work therefore provides a good reference for developing new oxide-ion conductors in the Zr-based RP-structured materials.

4.
Angew Chem Int Ed Engl ; 63(8): e202316957, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38168896

RESUMO

Mixed-anion-group Fe-based phosphate materials, such as Na4 Fe3 (PO4 )2 P2 O7 , have emerged as promising cathode materials for sodium-ion batteries (SIBs). However, the synthesis of pure-phase material has remained a challenge, and the phase evolution during sodium (de)intercalation is debating as well. Herein, a solid-solution strategy is proposed to partition Na4 Fe3 (PO4 )2 P2 O7 into 2NaFePO4 ⋅ Na2 FeP2 O7 from the angle of molecular composition. Via regulating the starting ratio of NaFePO4 and Na2 FeP2 O7 during the synthesis process, the nonstoichiometric pure-phase material could be successfully synthesized within a narrow NaFePO4 content between 1.6 and 1.2. Furthermore, the proposed synthesis strategy demonstrates strong applicability that helps to address the impurity issue of Na4 Co3 (PO4 )2 P2 O7 and nonstoichiometric Na3.4 Co2.4 (PO4 )1.4 P2 O7 are evidenced to be the pure phase. The model Na3.4 Fe2.4 (PO4 )1.4 P2 O7 cathode (the content of NaFePO4 equals 1.4) demonstrates exceptional sodium storage performances, including ultrahigh rate capability under 100 C and ultralong cycle life over 14000 cycles. Furthermore, combined measurements of ex situ nuclear magnetic resonance, in situ synchrotron radiation diffraction and X-ray absorption spectroscopy clearly reveal a two-phase transition during Na+ extraction/insertion, which provides a new insight into the ionic storage process for such kind of mixed-anion-group Fe-based phosphate materials and pave the way for the development of high-power sodium-ion batteries.

5.
J Am Chem Soc ; 145(3): 1548-1556, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36637214

RESUMO

Poly(ethylene oxide) has been widely investigated as a potential separator for solid-state lithium metal batteries. However, its applications were significantly restricted by low ionic conductivity and a narrow electrochemical stability window (<4.0 V vs Li/Li+) at room temperature. Herein, a novel molecular self-assembled ether-based polyrotaxane electrolyte was designed using different functional units and prepared by threading cyclic 18-crown ether-6 (18C6) to linear poly(ethylene glycol) (PEG) via intermolecular hydrogen bond and terminating with hexamethylene diisocyanate trimer (HDIt), which was strongly confirmed by local structure-sensitive solid/liquid-state nuclear magnetic resonance (NMR) techniques. The designed electrolyte has shown an obviously increased room-temperature ionic conductivity of 3.48 × 10-4 S cm-1 compared to 1.12 × 10-5 S cm-1 without assembling polyrotaxane functional units, contributing to the enhanced cycling stability of batteries with both LiFePO4 and LiNi0.8Co0.15Al0.05O2 cathode materials. This advanced molecular self-assembled strategy provides a new paradigm in designing solid polymer electrolytes with demanded performance for lithium metal batteries.

6.
JACS Au ; 4(2): 592-606, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425908

RESUMO

Li-doped high-entropy oxides (Li-HEO) are promising electrode materials for Li-ion batteries. However, their electrical conduction in a wide range of temperatures and/or at high pressure is unknown, hindering their applications under extreme conditions. Especially, a clear understanding of the conduction mechanism is needed. In this work, we determined the carrier type of several Li-doped (MgCoNiCuZn)O semiconductor compounds and measured their electrical conduction at temperatures 79-773 K and/or at pressures up to 50 GPa. Three optical band gaps were uncovered from the UV-vis-NIR absorption measurements, unveiling the existence of defect energy levels near the valence band of p-type semiconductors. The Arrhenius-like plot of the electrical conductivity data revealed the electronic conduction in three temperature regions, i.e., the ionization region from 79 to 170 K, the extrinsic region from ∼170 to 300 K, and the intrinsic region at ≥300 K. The closeness of the determined electronic band gap and the second optical band gap suggests that the conduction electrons in the intrinsic region originate from a thermal excitation from the defect energy levels to the conduction band, which determines the electronic conductivity. It was also found that at or above room temperature, ionic conduction coexists with electronic conduction with a comparable magnitude at ambient pressure and that the intrinsic conduction mechanism also operates at high pressures. These findings provide us a fundamental understanding of the band structure and conduction mechanism of Li-HEO, which would be indispensable to their applications in new technical areas.

7.
Chem Sci ; 15(11): 3988-3995, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487237

RESUMO

Na3Zr2Si2PO12 has been proven to be a promising electrolyte for solid-state sodium batteries. However, its poor conductivity prevents application, caused by the large ionic resistance created by the grain boundary. Herein, we propose an additional glass phase (Na-Ga-Si-P-O phase) to connect the grain boundary via Ga ion introduction, resulting in enhanced sodium-ion conduction and electrochemical performance. The optimized Na3Zr2Si2PO12-0.15Ga electrolyte exhibits Na+ conductivity of 1.65 mS cm-1 at room temperature and a low activation energy of 0.16 eV, with 20% newly formed glass phase enclosing the grain boundary. Temperature-dependent NMR line shapes and spin-lattice relaxation were used to estimate the Na self-diffusion and Na ion hopping. The dense glass-ceramic electrolyte design strategy and the structure-dynamics-property correlation from NMR, can be extended to the optimization of other materials.

8.
Nat Commun ; 14(1): 6501, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845205

RESUMO

Exploiting solid electrolyte (SE) materials with high ionic conductivity, good interfacial compatibility, and conformal contact with electrodes is essential for solid-state sodium metal batteries (SSBs). Here we report a crystalline Na5SmSi4O12 SE which features high room-temperature ionic conductivity of 2.9 × 10-3 S cm-1 and a low activation energy of 0.15 eV. All-solid-state symmetric cell with Na5SmSi4O12 delivers excellent cycling life over 800 h at 0.15 mA h cm-2 and a high critical current density of 1.4 mA cm-2. Such excellent electrochemical performance is attributed to an electrochemically induced in-situ crystalline-to-amorphous (CTA) transformation propagating from the interface to the bulk during repeated deposition and stripping of sodium, which leads to faster ionic transport and superior interfacial properties. Impressively, the Na|Na5SmSi4O12|Na3V2(PO4)3 sodium metal batteries achieve a remarkable cycling performance over 4000 cycles (6 months) with no capacity loss. These results not only identify Na5SmSi4O12 as a promising SE but also emphasize the potential of the CTA transition as a promising mechanism towards long-lasting SSBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA