Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(31): 16113-16120, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39051840

RESUMO

The field of artificial photosynthesis, which focuses on harnessing solar light for the conversion of CO2 to economically valuable chemical products, remains a captivating area of research. In this study, we developed a series of photocatalysts based on Earth abundant elements (Fe, Co, Ni, Cu, and Zn) incorporated into 2D metalloporphyrin-conjugated organic polymers known as MTBPP-BEPA-COPs. These photocatalysts were utilized for the photoreduction of CO2 employing only H2O as the electron donor, without the need for any sacrificial agents or precious-metal cocatalysts. Remarkably, all of the synthesized MTBPP-BEPA-COPs exhibited an exceptional CO2 photoreduction performance only irradiated by visible light. Particularly, upon optimizing the metal ion coordinated with porphyrin units, ZnTBPP-BEPA-COP outperformed the other MTBPP-BEPA-COPs in terms of photocatalytic activity, achieving an impressive CO reduction yield of 152.18 µmol g-1 after just 4 h of irradiation. The electrostatic potential surfaces calculated by density functional theory suggest the potential involvement of metal centers as binding and catalytic sites for the binding of CO2. The calculated adsorption energy of CO2 with ZnTBPP-BEPA-COP exhibited one of the two smallest values. This may be the reason for the excellent catalytic effect of ZnTBPP-BEPA-COP. Thus, the present study not only demonstrates the potential of porphyrin-based conjugated polymers as highly efficient photocatalysts for CO2 reduction but also offers valuable insights into the rational design of such materials in the future.

2.
Dalton Trans ; 51(39): 15022-15030, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36112028

RESUMO

A porphyrin-based conjugated organic polymer (COP) was constructed from 5,10,15,20-tetrakis(4-bromophenyl)porphyrin copper (CuTBPP) and 5,5'-bis-ethynyl-2,2'-bipyridine (BPY) via Sonogashira coupling. Its complex Co/CuTBPP-BPY-COP (with dual metal sites composed of copper porphyrin and a cobalt BPY unit) was prepared by coordination with Co2+. All of the prepared CuTBPP-BPY-COP and Co/CuTBPP-BPY-COP compounds exhibited excellent photocatalytic performance toward CO2 reduction under visible-light irradiation without another sacrificial reagent but only H2O. Co/CuTBPP-BPY-COP (dual metal sites) exhibited better photocatalytic activity than CuTBPP-BPY-COP (a single metal site). Co/CuTBPP-BPY-COP retained a higher photocatalysis capacity for CO2 reduction after 10 consecutive cycles. The total quantity of CO product was 263.2 µmol g-1 after 10 h of irradiation. Theoretical studies indicate that introducing Co metal centers and nitro groups are more favorable for the photoreduction catalysis of CO2 compared with that using CuTBPP-BPY-COP.

3.
Dalton Trans ; 50(5): 1703-1711, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33443530

RESUMO

Transition metal phosphides are used as anode materials for lithium-ion batteries because of their high theoretical capacity and low polarization. In this work, a core-shell GaP@C nanocomposite was successfully synthesized by a simple chemical vapor deposition (CVD) method, utilizing commercial GaP as the raw material and xylene as the carbon source. The uniform thin carbon shell could alleviate the volumetric variation and improve the conductivity of the inner GaP. When used as an anode in lithium-ion batteries, the GaP@C nanocomposite has a capacity of 812 mA h g-1 at a current density of 0.5 A g-1 after 100 cycles. At a high current density of 2 A g-1, the GaP@C anode delivers a good capacity value of 1087 mA h g-1.

4.
RSC Adv ; 10(54): 32345-32349, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35516520

RESUMO

A bagasse-based 3D carbon matrix (BC) with high specific surface area and high conductivity was obtained by carbonization and pore-forming processes with bagasse as the carbon precursor and K2FeO4 as the pore-former. The microporous structure and nitrogenous functional groups were determined in the prepared carbon matrix, which could allow high sulfur loading and improve the polysulfide absorption capacity during cycling. After sulfur infusion, the S/BC composite with 68.8% sulfur content was obtained. The lithium-sulfur (Li-S) battery with the S/BC cathode shows high specific capacity and good cycling performance. It delivers a specific capacity of 1360 mA h g-1 at 0.2C and remains at 790 mA h g-1 after 200 cycles. At 1C, the Li-S with this composite cathode exhibits 601 mA h g-1 after 150 cycles. This work offers a new kind of green material and a new method for Li-S batteries.

5.
Inorg Chem ; 43(17): 5442-9, 2004 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-15310226

RESUMO

In this paper, we describe how WO(3) hollow spheres have been synthesized in solution phase by the controlled hydrolysis of WCl(6) using novel carbon microspheres as the templates. All of the products were characterized by X-ray powder diffraction (XRD), scanning electronic microscopy (SEM), and transmission electron microscopy (TEM). The as-synthesized spheres had large diameters of about 400 nm and thin shells of about 30 nm composed of numerous small nanocrystals. Prompted by the porous structure and small crystal size of the shell wall, we constructed WO(3) hollow-sphere gas sensors and found that these sensors had good sensitivity to alcohol, acetone, CS(2), and other organic gases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA