RESUMO
Bifidobacterium pseudocatenulatum LI09 could prevent D-galactosamine-induced liver injury. Our previous study has preliminarily determined that different intestinal microbiota profiles existed in the LI09-treated rats. Due to the sample size limitation, some subsequent analyses could not be achieved. In the current study, we conducted different experiments and bioinformatic analyses to characterise the distinct intestinal bacterial microbiota profiles in the LI09-treated rats with liver injury (i.e., LI09 group). Partition around medoids clustering analysis determined two intestinal microbiota profiles (i.e., Cluster_1_LI09 and Cluster_2_LI09) in LI09 group. Compared with Cluster_2_LI09, Cluster_1_LI09 group was determined at less dysbiotic microbial status and with lower level of liver injury. The two microbiota profiles were determined with distinct representative amplicon sequence variants (ASVs), among which, ASV1_Akkermansia and ASV3_Bacteroides were most associated with Cluster_1_LI09 and Cluster_2_LI09, respectively. Multiple representative phylotypes in Cluster_1_LI09 negatively correlating with liver function variables were assigned to Parabacteroides, suggesting Parabacteroides could benefit LI09 on modulating the liver function. In addition, ASV310_Lachnospiraceae, ASV501_Muribaculaceae and ASV484_Lachnospiraceae were determined as network gatekeepers in Cluster_1_LI09 network. The relevant results suggest that some intestinal bacteria could assist LI09 in lowering the intestinal microbial dysbiosis in the rats with liver injury, and their clinical application deserves further investigation.
Assuntos
Bifidobacterium pseudocatenulatum , Doença Hepática Crônica Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Microbiota , Ratos , Animais , Galactosamina/toxicidade , Fígado/microbiologia , Disbiose , BactériasRESUMO
Microplastics (MP) and nanoplastics (NP) exist in the disposable plastic take-away containers. This study aims to determine the gut and oral microbiota alterations in the individuals frequently and occasionally consuming take-away food in disposable plastic containers (TFDPC), and explore the effect of micro/nanoplastics (MNP) reduction on gut microbiota in mice. TFDPC consumption are associated with greater presences of gastrointestinal dysfunction and cough. Both occasional and frequent consumers have altered gut and oral microbiota, and their gut diversity and evenness are greater than those of non-TFDPC consuming cohort. Multiple gut and oral bacteria are associated with TFDPC consumers, among which intestinal Collinsella and oral Thiobacillus are most associated with the frequent consumers, while intestinal Faecalibacterium is most associated with the occasional consumers. Although some gut bacteria associated with the mice treated with 500 µg NP and 500 µg MP are decreased in the mice treated with 200 µg NP, the gut microbiota of the three MNP groups are all different from the control group. This study demonstrates that TFDPC induces gut and oral microbiota alterations in the consumers, and partial reduction of the size and amount of MNP cannot rectify the MNP-induced gut microbial dysbiosis.