Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Geophys Res Lett ; 49(19): e2022GL100091, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36582258

RESUMO

On 15 January 2022, the submarine Hunga Tonga volcanic eruption lofted materials high into the upper stratosphere, reaching a record-breaking altitude of ∼58 km, unprecedented in the satellite observations era. Within two weeks, the bulk of the injected material circulated the globe between 20-30 km altitude, as observed by satellite instruments. We estimate that the stratospheric aerosol optical depth (sAOD) is the largest since the Pinatubo eruption and is at least twice as great as the sAOD after the 2015 Calbubo eruption despite the similar SO2 injection from that eruption. We use space-based observations to monitor the Hunga-Tonga volcanic plume evolution and transport at different altitudes as it circulates the globe. While the main aerosol layer remains trapped in the tropical pipe, small parts have already made it to both the northern and southern hemisphere poles by April, which is almost certain to influence this year's ozone hole.

2.
Phytopathology ; 101(11): 1278-84, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21770777

RESUMO

Stagonospora nodorum blotch (SNB) is a significant disease in some wheat-growing regions of the world. Resistance in wheat to Stagonospora nodorum is complex, whereby genes for seedling, flag leaf, and glume resistance are independent. The aims of this study were to identify alternative genes for flag leaf resistance, to compare and contrast with known quantitative trait loci (QTL) for SNB resistance, and to determine the potential role of host-specific toxins for SNB QTL. Novel QTL for flag leaf resistance were identified on chromosome 2AS inherited from winter wheat parent 'P92201D5' and chromosome 1BS from spring wheat parent 'EGA Blanco'. The chromosomal map position of markers associated with QTL on 1BS and 2AS indicated that they were unlikely to be associated with known host-toxin insensitivity loci. A QTL on chromosome 5BL inherited from EGA Blanco had highly significant association with markers fcp001 and fcp620 based on disease evaluation in 2007 and, therefore, is likely to be associated with Tsn1-ToxA insensitivity for flag leaf resistance. However, fcp001 and fcp620 were not associated with a QTL detected based on disease evaluation in 2008, indicating two linked QTL for flag leaf resistance with multiple genes residing on 5BL. This study identified novel QTL and their effects in controlling flag leaf SNB resistance.


Assuntos
Ascomicetos/fisiologia , Genes de Plantas/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , Locos de Características Quantitativas/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Marcadores Genéticos/genética , Interações Hospedeiro-Patógeno , Micotoxinas , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Plântula/genética , Plântula/microbiologia , Triticum/crescimento & desenvolvimento , Triticum/imunologia
3.
Phytopathology ; 98(8): 886-93, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18943206

RESUMO

Stagonospora nodorum blotch (SNB) caused by Stagonospora nodorum is a severe disease of wheat (Triticum aestivum) in many areas of the world. S. nodorum affects both seedling and adult plants causing necrosis of leaf and glume tissue, inhibiting photosynthetic capabilities, and reducing grain yield. The aims of this study were to evaluate disease response of 280 doubled haploid (DH) individuals derived from a cross between resistant (6HRWSN125) and susceptible (WAWHT2074) genotypes, compare quantitative trait loci (QTL) for seedling and adult plant resistance in two consecutive years, and assess the contribution of QTL on grain weight. Flag leaves and glumes of individuals from the DH population were inoculated with mixed isolates of S. nodorum at similar maturity time to provide accurate disease evaluation independent of morphological traits and identify true resistance for QTL analysis. Fungicide protected and inoculated plots were used to measure relative grain weight (RGW) as a yield-related trait under pathogen infection. The lack of similar QTL and little or no correlation in disease scores indicate different genes control seedling and adult plant disease and independent genes control flag leaf and glume resistance. This study consistently identified a QTL on chromosome 2DL for flag leaf resistance (QSnl.daw-2D) and 4BL for glume resistance (QSng.daw-4B) from the resistant parent, 6HRWSN125, explaining 4 to 19% of the phenotypic variation at each locus. A total of 5 QTL for RGW were consistently detected, where two were in the same marker interval for QSnl.daw-2D and QSng.daw-4B indicating the contribution of these QTL to yield related traits. Therefore, RGW measurement in QTL analysis could be used as a reliable indicator of grain yield affected by S. nodorum infection.


Assuntos
Ascomicetos/fisiologia , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Triticum/genética , Triticum/microbiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Predisposição Genética para Doença , Doenças das Plantas/microbiologia , Plântula/genética , Plântula/microbiologia
4.
Theor Appl Genet ; 112(6): 1143-8, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16435125

RESUMO

An uncharacterized source of seedling resistance to Puccinia striiformis f.sp. tritici was identified in an advanced wheat breeding line WAWHT2046. Genetic analysis based on a WAWHT2046/Carnamah-derived double haploid (DH) population demonstrated monogenic inheritance of seedling stripe rust resistance in WAWHT2046. The gene controlling stripe rust resistance in line WAWHT2046 was tentatively designated YrWA. The chromosome 5AL located awn inhibitor gene B1, possessed by WAWHT2046, also showed monogenic inheritance when the DH population was scored for the presence and absence of awns. Joint segregation analysis at the B1 and YrWA loci indicated genetic linkage between the two loci. A recombination value of 12.2 cM was computed using Mapmanager. This association located YrWA in the chromosome arm 5AL. Molecular mapping using microsatellite markers placed YrWA distal to B1. All molecular markers mapped proximal to the awn inhibitor locus B1. As no other stripe rust resistance gene is reported to be located in the chromosome arm 5AL, YrWA was permanently designated as Yr34. Yr34 produced an intermediate (23C) seedling infection type and expressed very low stripe rust response (10R-MR) on adult plants in the field, similar to the resistance gene Yr17. In addition to Yr34, this mapping population segregated for three genetically independent adult plant stripe rust resistance genes. The detection of DH lines with completely susceptible response, higher than that shown by the Yr34-lacking parent Carnamah, suggested that both parents contributed adult plant resistance. The use of WAWHT2046 as a parent in breeding programs would also contribute APR in addition to Yr34.


Assuntos
Marcadores Genéticos , Imunidade Inata/genética , Doenças das Plantas/genética , Polimorfismo Genético , Triticum/genética , Mapeamento Cromossômico , Ligação Genética , Doenças das Plantas/microbiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA