Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Immunol Ther Exp (Warsz) ; 54(2): 85-101, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16648969

RESUMO

Gene amplification, over-expression, and mutation of growth factors, or the receptors themselves, causes increased signaling through receptor kinases, which has been implicated in many human cancers and is associated with poor prognosis. Tumor growth has been shown to be decreased by interrupting this process of extensive growth factor-mediated signaling by directly targeting either the surface receptor or the ligand and thereby preventing cell survival and promoting apoptosis. Monoclonal antibodies have long been eyed as a potential new class of therapeutics targeting cancer and other diseases. Antibody-based therapy initially entered clinical practice when trastuzumab/Herceptin became the first clinically approved drug against an oncogene product as a well-established blocking reagent for tumors with hyperactivity of epidermal growth factor signaling pathways. In the first part of this review we explain basic terms related to the development of antibody-based drugs, give a brief historic perspective of the field, and also touch on topics such as the "humanization of antibodie" or creation of hybrid antibodies. The second part of the review gives an overview of the clinical usage of bispecific antibodies and antibodies "armed" with cytotoxic agents or enzymes. Further within this section, cancer-specific, site-specific, or signaling pathway-specific therapies are discussed in detail. Among other antibody-based therapeutic products, we discuss: Avastin (bevacizumab), CG76030, Theragyn (pemtumomab), daclizumab (Zenapax), TriAb, MDX-210, Herceptin (trastuzumab), panitumumab (ABX-EGF), mastuzimab (EMD-72000), Erbitux (certuximab, IMC225), Panorex (edrecolomab), STI571, CeaVac, Campath (alemtuizumab), Mylotarg (gemtuzumab, ozogamicin), and many others. The end of the review deliberates upon potential problems associated with cancer immunotherapy.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Desenho de Fármacos , Neoplasias/imunologia , Antígenos de Neoplasias/imunologia , Humanos , Neoplasias/terapia , Proteínas Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento/antagonistas & inibidores , Receptores de Fatores de Crescimento/imunologia , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores do Fator de Necrose Tumoral/imunologia , Transdução de Sinais
2.
Exp Clin Cardiol ; 15(4): e75-85, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21264073

RESUMO

Over the past decade, extensive research has focused on identifying the molecular mechanisms and signal transduction pathways involved in the modulation of vascular smooth muscle cell phenotypes. In the present review, the characteristics of vascular smooth muscle cell (VSMC) phenotypes as they relate to cell migration are discussed based on insights from recent molecular findings. A central theme is the mechanisms involved in nonpathogenic VSMC migration during tissue repair versus VSMC invasion that leads to the development of vascular diseases. The issue of how various factors that are released locally following tissue injury influence cell migration will also be addressed.

3.
Neoplasia ; 9(7): 578-88, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17710161

RESUMO

Robertsonian (Rb) translocation chromosomes occur in human and murine cancers and involve the aberrant joining of two acrocentric chromosomes in humans and two telocentric chromosomes in mice. Mechanisms leading to their generation remain elusive, but models for their formation have been proposed. They include breakage of centromeric sequences and their subsequent fusions, centric misdivision, misparing between highly repetitive sequences of p-tel or p-arm repeats, and recombinational joining of centromeres and/or centromeric fusions. Here, we have investigated the role of the oncoprotein c-Myc in the formation of Rb chromosomes in mouse cells harboring exclusively telocentric chromosomes. In mouse plasmacytoma cells with constitutive c-Myc deregulation and in immortalized mouse lymphocytes with conditional c-Myc expression, we show that positional remodeling of centromeres in interphase nuclei coincides with the formation of Rb chromosomes. Furthermore, we demonstrate that c-Myc deregulation in a myc box II-dependent manner is sufficient to induce Rb translocation chromosomes. Because telomeric signals are present at all joined centromeres of Rb chromosomes, we conclude that c-Myc mediates Rb chromosome formation in mouse cells by telomere fusions at centromeric termini of telocentric chromosomes. Our findings are relevant to the understanding of nuclear chromosome remodeling during the initiation of genomic instability and tumorigenesis.


Assuntos
Centrômero/metabolismo , Cromossomos de Mamíferos/metabolismo , Plasmocitoma/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Telômero/metabolismo , Translocação Genética , Animais , Linhagem Celular Tumoral , Instabilidade Cromossômica , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética
4.
Proc Natl Acad Sci U S A ; 102(27): 9613-8, 2005 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-15983382

RESUMO

In previous work, we showed that telomeres of normal cells are organized within the 3D space of the interphase nucleus in a nonoverlapping and cell cycle-dependent manner. This order is distorted in tumor cell nuclei where telomeres are found in close association forming aggregates of various numbers and sizes. Here we show that c-Myc overexpression induces telomeric aggregations in the interphase nucleus. Directly proportional to the duration of c-Myc deregulation, we observe three or five cycles of telomeric aggregate formation in interphase nuclei. These cycles reflect the onset and propagation of breakage-bridge-fusion cycles that are initiated by end-to-end telomeric fusions of chromosomes. Subsequent to initial chromosomal breakages, new fusions follow and the breakage-bridge-fusion cycles continue. During this time, nonreciprocal translocations are generated. c-Myc-dependent remodeling of the organization of telomeres thus precedes the onset of genomic instability and subsequently leads to chromosomal rearrangements. Our findings reveal that c-Myc possesses the ability to structurally modify chromosomes through telomeric fusions, thereby reorganizing the genetic information.


Assuntos
Instabilidade Cromossômica/fisiologia , Cromossomos de Mamíferos/fisiologia , Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico/genética , Interfase/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Telômero/genética , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/fisiologia , Instabilidade Cromossômica/genética , Coloração Cromossômica , Cromossomos de Mamíferos/genética , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Interfase/genética , Cariotipagem , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA