Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 76(21): 4319-4340, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31062073

RESUMO

The human gut microbiota, which underpins nutrition and systemic health, is compositionally sensitive to the availability of complex carbohydrates in the diet. The Bacteroidetes comprise a dominant phylum in the human gut microbiota whose members thrive on dietary and endogenous glycans by employing a diversity of highly specific, multi-gene polysaccharide utilization loci (PUL), which encode a variety of carbohydrases, transporters, and sensor/regulators. PULs invariably also encode surface glycan-binding proteins (SGBPs) that play a central role in saccharide capture at the outer membrane. Here, we present combined biophysical, structural, and in vivo characterization of the two SGBPs encoded by the Bacteroides ovatus mixed-linkage ß-glucan utilization locus (MLGUL), thereby elucidating their key roles in the metabolism of this ubiquitous dietary cereal polysaccharide. In particular, molecular insight gained through several crystallographic complexes of SGBP-A and SGBP-B with oligosaccharides reveals that unique shape complementarity of binding platforms underpins specificity for the kinked MLG backbone vis-à-vis linear ß-glucans. Reverse-genetic analysis revealed that both the presence and binding ability of the SusD homolog BoSGBPMLG-A are essential for growth on MLG, whereas the divergent, multi-domain BoSGBPMLG-B is dispensable but may assist in oligosaccharide scavenging from the environment. The synthesis of these data illuminates the critical role SGBPs play in concert with other MLGUL components, reveals new structure-function relationships among SGBPs, and provides fundamental knowledge to inform future (meta)genomic, biochemical, and microbiological analyses of the human gut microbiota.


Assuntos
Bacteroides/fisiologia , Grão Comestível/metabolismo , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Proteínas de Membrana/fisiologia , Polissacarídeos/metabolismo , beta-Glucanas/metabolismo , Bacteroides/genética , Bacteroides/metabolismo , Metabolismo dos Carboidratos/fisiologia , Sequência de Carboidratos , Fibras na Dieta/metabolismo , Microbioma Gastrointestinal/fisiologia , Regulação Bacteriana da Expressão Gênica , Loci Gênicos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Proteínas de Membrana/metabolismo
2.
Methods Enzymol ; 567: 97-127, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26794352

RESUMO

Base- and sugar-modified analogs of DNA and RNA are finding ever expanding use in medicine and biotechnology as tools to better tailor structured oligonucleotides by altering their thermal stability, nuclease resistance, base-pairing specificity, antisense activity, or cellular uptake. Proper deployment of these chemical modifications generally requires knowledge of how each affects base-pairing properties and thermal stabilities. Here, we describe in detail how differential scanning calorimetry and UV spectroscopy may be used to quantify the melting thermodynamics of short dsDNA containing chemically modified nucleosides in one or both strands. Insights are provided into why and how the presence of highly stable base pairs containing modified nucleosides can alter the nature of calorimetry or melting spectroscopy data, and how each experiment must therefore be conducted to ensure high-quality melting thermodynamics data are obtained. Strengths and weaknesses of the two methods when applied to chemically modified duplexes are also addressed.


Assuntos
DNA/química , Nucleotídeos/química , Oligonucleotídeos/química , Varredura Diferencial de Calorimetria , Conformação de Ácido Nucleico , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA