Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 15(4): 1403-1411, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462558

RESUMO

Mesothelin is an epithelial marker highly expressed at the cell surface of cancer cells from diverse origins, including ovarian and pancreatic adenocarcinomas and mesotheliomas. Previously, we identified and characterized an antimesothelin nanobody (NbG3a) for in vitro diagnostic applications. The main goal of this research was to establish the potential of NbG3a as a molecular imaging agent. Site-specific biotinylated NbG3a (bNbG3a) was bound to streptavidin-conjugated reagents for in vitro and in vivo assays. Initially, we performed microscale thermophoresis to determine the binding affinity between bNbG3a and human ( Kd = 46 ± 8 nM) or mouse ( Kd = 4.8 ± 0.4 nM) mesothelin protein. The human and mouse cross-reactivity was confirmed by in vivo optical imaging using bNbG3a bound to fluorescent streptavidin. We also localized the binding site of nNbG3a on human mesothelin using overlapping peptide scan. NbG3a recognized an epitope within residues 21-65 of the mature membrane bound form of human mesothelin, which is part of the N-terminal region of mesothelin that is important for interactions between mesothelin on peritoneal cells and CA125 on tumor cells. Next, the bNbG3a in vivo half-life after intravenous injection in healthy mice was estimated by ELISA assay to be 5.3 ± 1.3 min. In tumor-bearing animals, fluorescent bNbG3a accumulated in a subcutaneous ovarian xenograft (A1847) and in two syngeneic, orthotopic ovarian tumors (intraovary and intraperitoneal ID8) within an hour of intravenous injection that peaked by 4 h and persisted up to 48 h. MRI analysis of bNbG3a-targeted streptavidin-labeled iron oxides showed that the MRI signal intensity decreased 1 h after injection for a subcutaneous xenograft model of ovarian cancer for bNbG3a-labeled iron oxides compared to unlabeled iron oxides. The signal intensity differences continued up to the final time point at 24 h post injection. Finally, in vivo immunofluorescence 24 or 48 h after bNbG3a intravenous injection showed bNbG3a diffuse distribution of both xenograft and syngeneic ovarian tumors, with local areas of high concentration throughout A1847 human tumor. The data support the use of NbG3a for continued preclinical development and translation to human applications for cancers that overexpress mesothelin.


Assuntos
Reações Cruzadas/imunologia , Proteínas Ligadas por GPI/metabolismo , Neoplasias Ovarianas/patologia , Anticorpos de Domínio Único/imunologia , Animais , Antígeno Ca-125/metabolismo , Linhagem Celular Tumoral , Feminino , Compostos Férricos/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas Ligadas por GPI/imunologia , Xenoenxertos , Humanos , Imageamento por Ressonância Magnética/métodos , Mesotelina , Camundongos , Camundongos Endogâmicos C57BL , Imagem Molecular/métodos , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Estreptavidina/metabolismo
2.
J Bacteriol ; 191(23): 7147-56, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19767432

RESUMO

Helicobacter pylori uses flagellum-mediated chemotaxis to promote infection. Bacterial flagella change rotational direction by changing the state of the flagellar motor via a subcomplex referred to as the switch. Intriguingly, the H. pylori genome encodes four switch complex proteins, FliM, FliN, FliY, and FliG, instead of the more typical three of Escherichia coli or Bacillus subtilis. Our goal was to examine whether and how all four switch proteins participate in flagellation. Previous work determined that FliG was required for flagellation, and we extend those findings to show that all four switch proteins are necessary for normal numbers of flagellated cells. Furthermore, while fliY and fliN are partially redundant with each other, both are needed for wild-type levels of flagellation. We also report the isolation of an H. pylori strain containing an R54C substitution in fliM, resulting in bacteria that swim constantly and do not change direction. Along with data demonstrating that CheY-phosphate interacts with FliM, these findings suggest that FliM functions in H. pylori much as it does in other organisms.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Flagelos/genética , Flagelos/ultraestrutura , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Helicobacter pylori/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Alinhamento de Sequência , Transdução de Sinais
3.
Trends Microbiol ; 18(11): 494-503, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20832320

RESUMO

Microbes have chemotactic signaling systems that enable them to detect and follow chemical gradients in their environments. The core of these sensory systems consists of chemoreceptor proteins coupled to the CheA kinase via the scaffold or coupler protein CheW. Some bacterial chemotaxis systems replace or augment CheW with a related protein, CheV, which is less well understood. CheV consists of a CheW domain fused to a receiver domain that is capable of being phosphorylated. Our review of the literature, as well as comparisons of the CheV and CheW sequence and structure, suggest that CheV proteins conserve CheW residues that are crucial for coupling. Phosphorylation of the CheV receiver domain might adjust the efficiency of its coupling and thus allow the system to modulate the response to chemical stimuli in an adaptation process.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Fatores Quimiotáticos/metabolismo , Quimiotaxia , Transdução de Sinais , Bactérias/citologia , Proteínas de Bactérias/genética , Fatores Quimiotáticos/genética , Fosforilação
4.
Microbiology (Reading) ; 155(Pt 4): 1181-1191, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19332820

RESUMO

Helicobacter pylori is a chemotactic bacterium that has three CheV proteins in its predicted chemotaxis signal transduction system. CheV proteins contain both CheW- and response-regulator-like domains. To determine the function of these proteins, we developed a fixed-time diffusion method that would quantify bacterial direction change without needing to define particular behaviours, to deal with the many behaviours that swimming H. pylori exhibit. We then analysed mutants that had each cheV gene deleted individually and found that the behaviour of each mutant differed substantially from wild-type and the other mutants. cheV1 and cheV2 mutants displayed smooth swimming behaviour, consistent with decreased cellular CheY-P, similar to a cheW mutant. In contrast, the cheV3 mutation had the opposite effect and the mutant cells appeared to change direction frequently. Additional analysis showed that the cheV mutants displayed aberrant behaviour as compared to the wild-type in the soft-agar chemotaxis assay. The soft-agar assay phenotype was less extreme compared to that seen in the fixed-time diffusion model, suggesting that the cheV mutants are able to partially compensate for their defects under some conditions. Each cheV mutant furthermore had defects in mouse colonization that ranged from severe to modest, consistent with a role in chemotaxis. These studies thus show that the H. pylori CheV proteins each differently affect swimming behaviour.


Assuntos
Proteínas de Bactérias/metabolismo , Fatores Quimiotáticos/metabolismo , Quimiotaxia/fisiologia , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/fisiologia , Modelos Biológicos , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fatores Quimiotáticos/química , Fatores Quimiotáticos/genética , Difusão , Feminino , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Transdução de Sinais
5.
Infect Immun ; 70(4): 1984-90, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11895962

RESUMO

Helicobacter pylori has been shown to require flagella for infection of the stomach. To analyze whether flagella themselves or motility is needed by these pathogens, we constructed flagellated nonmotile mutants. This was accomplished by using both an insertion mutant and an in-frame deletion of the motB gene. In vitro, these mutants retain flagella (Fla(+)) but are nonmotile (Mot(-)). By using FVB/N mice, we found that these mutants had reduced ability to infect mice in comparison to that of their isogenic wild-type counterparts. When these mutants were coinfected with wild type, we were unable to detect any motB mutant. Finally, by analyzing the 50% infectious dose, we found that motility is needed for initial colonization of the stomach mucosa. These results support a model in which motility is used for the initial colonization of the stomach and also to attain full infection levels.


Assuntos
Proteínas de Bactérias/fisiologia , Flagelos/fisiologia , Helicobacter pylori/fisiologia , Estômago/microbiologia , Animais , Flagelina/genética , Camundongos , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA