RESUMO
Hypothermic oxygenated machine perfusion (HOPE) is an organ preservation strategy shown to reduce ischemia-reperfusion-injury (IRI)-related complications following liver transplantation (LT). In animal models HOPE can also decrease alloimmune responses post-transplantation, but this remains to be evaluated in humans. Our study, involving 27 LT patients enrolled in 2 randomised controlled trials comparing static cold storage (SCS) with HOPE (14 HOPE- and 13 SCS-treated), delves into the impact of HOPE on the molecular profile of liver allografts and on the immune responses elicited post-transplantation. Following HOPE treatment, fewer intra-hepatic immune cells were observed in liver perfusates compared to SCS. Analysis of liver tissue transcriptome at reperfusion revealed an effect of HOPE on the reactive oxygen species pathway. Two weeks post-transplantation, HOPE recipients exhibited increased circulating CD4+FOXP3+CD127lo regulatory T cells (Tregs) (p<0.01), which corresponded to a higher frequency of donor specific Tregs (p<0.01) and was followed by reduced alloreactivity index of CD8+ T cells 3 months post-transplant. Our study provides novel mechanistic insight into the capacity of HOPE to influence liver IRI and to modulate effector and regulatory donor-specific T cell responses post-transplantation. These findings, which confirm observations made in animal models, help explain the decreased rejection rates reported in patients receiving HOPE-treated allografts.
RESUMO
BACKGROUND AND AIMS: Patients with compensated cirrhosis with clinically significant portal hypertension (CSPH: HVPG > 10 mm Hg) have a high risk of decompensation. HVPG is, however, an invasive procedure not available in all centers. The present study aims to assess whether metabolomics can improve the capacity of clinical models in predicting clinical outcomes in these compensated patients. APPROACH AND RESULTS: This is a nested study from the PREDESCI cohort (an RCT of nonselective beta-blockers vs. placebo in 201 patients with compensated cirrhosis and CSPH), including 167 patients for whom a blood sample was collected. A targeted metabolomic serum analysis, using ultra-high-performance liquid chromatography-mass spectrometry, was performed. Metabolites underwent univariate time-to-event cox regression analysis. Top-ranked metabolites were selected using Log-Rank p -value to generate a stepwise cox model. Comparison between models was done using DeLong test. Eighty-two patients with CSPH were randomized to nonselective beta-blockers and 85 to placebo. Thirty-three patients developed the main endpoint (decompensation/liver-related death). The model, including HVPG, Child-Pugh, and treatment received ( HVPG/Clinical model ), had a C-index of 0.748 (CI95% 0.664-0.827). The addition of 2 metabolites, ceramide (d18:1/22:0) and methionine (HVPG/Clinical/Metabolite model), significantly improved the model's performance [C-index of 0.808 (CI95% 0.735-0.882); p =0.032]. The combination of these 2 metabolites together with Child-Pugh and the type of treatment received (Clinical/Metabolite model) had a C-index of 0.785 (CI95% 0.710-0.860), not significantly different from the HVPG-based models including or not metabolites. CONCLUSIONS: In patients with compensated cirrhosis and CSPH, metabolomics improves the capacity of clinical models and achieves similar predictive capacity than models including HVPG.
Assuntos
Hipertensão Portal , Cirrose Hepática , Humanos , Hipertensão Portal/complicações , Antagonistas Adrenérgicos beta/uso terapêutico , Modelos de Riscos Proporcionais , Pressão na Veia PortaRESUMO
DNA damage induces apoptosis and many apoptotic genes are regulated via alternative splicing (AS), but little is known about the control mechanisms. Here we show that ultraviolet irradiation (UV) affects cotranscriptional AS in a p53-independent way, through the hyperphosphorylation of RNA polymerase II carboxy-terminal domain (CTD) and a subsequent inhibition of transcriptional elongation, estimated in vivo and in real time. Phosphomimetic CTD mutants not only display lower elongation but also duplicate the UV effect on AS. Consistently, nonphosphorylatable mutants prevent the UV effect. Apoptosis promoted by UV in cells lacking p53 is prevented when the change in AS of the apoptotic gene bcl-x is reverted, confirming the relevance of this mechanism. Splicing-sensitive microarrays revealed a significant overlap of the subsets of genes that have changed AS with UV and those that have reduced expression, suggesting that transcriptional coupling to AS is a key feature of the DNA-damage response.
Assuntos
Processamento Alternativo/efeitos da radiação , RNA Polimerase II/metabolismo , Raios Ultravioleta , Apoptose , Linhagem Celular Tumoral , Dano ao DNA , Diclororribofuranosilbenzimidazol/farmacologia , Fibronectinas/genética , Fibronectinas/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Humanos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , RNA Polimerase II/química , Transcrição GênicaRESUMO
Vascular endothelial function is challenged during cerebral ischemia and reperfusion. The endothelial responses are involved in inflammatory leukocyte attraction, adhesion and infiltration, blood-brain barrier leakage, and angiogenesis. This study investigated gene expression changes in brain endothelial cells after acute ischemic stroke using transcriptomics and translatomics. We isolated brain endothelial mRNA by: (i) translating ribosome affinity purification, enabling immunoprecipitation of brain endothelial ribosome-attached mRNA for translatome sequencing and (ii) isolating CD31+ endothelial cells by fluorescence-activating cell sorting for classical transcriptomic analysis. Both techniques revealed similar pathways regulated by ischemia but they showed specific differences in some transcripts derived from non-endothelial cells. We defined a gene set characterizing the endothelial response to acute stroke (24h) by selecting the differentially expressed genes common to both techniques, thus corresponding with the translatome and minimizing non-endothelial mRNA contamination. Enriched pathways were related to inflammation and immunoregulation, angiogenesis, extracellular matrix, oxidative stress, and lipid trafficking and storage. We validated, by flow cytometry and immunofluorescence, the protein expression of several genes encoding cell surface proteins. The inflammatory response was associated with the endothelial upregulation of genes related to lipid storage functions and we identified lipid droplet biogenesis in the endothelial cells after ischemia. The study reports a robust translatomic signature of brain endothelial cells after acute stroke and identifies enrichment in novel pathways involved in membrane signaling and lipid storage. Altogether these results highlight the endothelial contribution to the inflammatory response, and identify novel molecules that could be targets to improve vascular function after ischemic stroke.
Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/genética , Transcriptoma , Encéfalo , Acidente Vascular Cerebral/genética , LipídeosRESUMO
Soluble guanylate cyclase (sGC) catalyzes the conversion of guanosine triphosphate into cyclic guanosine-3',5'-monophosphate, a key second messenger in cell signaling and tissue homeostasis. It was recently demonstrated that sGC stimulation is associated with a marked antiinflammatory effect in the liver of mice with experimental nonalcoholic steatohepatitis (NASH). Here, we investigated the mechanisms underlying the antiinflammatory effect of the sGC stimulator praliciguat (PRL) in the liver. Therapeutic administration of PRL exerted antiinflammatory and antifibrotic actions in mice with choline-deficient l-amino acid-defined high-fat diet-induced NASH. The PRL antiinflammatory effect was associated with lower F4/80- and CX3CR1-positive macrophage infiltration into the liver in parallel with lower Ly6CHigh- and higher Ly6CLow-expressing monocytes in peripheral circulation. The PRL antiinflammatory effect was also associated with suppression of hepatic levels of interleukin (IL)-1ß, NLPR3 (NACHT, LRR, and PYD domain-containing protein 3), ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain), and active cleaved-caspase-1, which are components of the NLRP3 inflammasome. In Kupffer cells challenged with the classical inflammasome model of lipopolysaccharide plus adenosine triphosphate, PRL inhibited the priming (expression of Il1b and Nlrp3) and blocked the release of mature IL-1ß. Mechanistically, PRL induced the protein kinase G (PKG)-mediated phosphorylation of the VASP (vasodilator-stimulated phosphoprotein) Ser239 residue which, in turn, reduced nuclear factor-κB (NF-κB) activity and Il1b and Nlrp3 gene transcription. PRL also reduced active cleaved-caspase-1 levels independent of pannexin-1 activity. These data indicate that sGC stimulation with PRL exerts antiinflammatory actions in the liver through mechanisms related to a PKG/VASP/NF-κB/NLRP3 inflammasome circuit.
Assuntos
Moléculas de Adesão Celular/metabolismo , Inflamassomos/metabolismo , Fígado/metabolismo , Proteínas dos Microfilamentos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosfoproteínas/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antígenos Ly/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Células de Kupffer/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Guanilil Ciclase Solúvel/farmacologiaRESUMO
BACKGROUND: Helicobacter pylori infection is the most important risk factor for gastric cancer (GC). Human gastric adenocarcinoma develops after long-term H. pylori infection via the Correa cascade. This carcinogenic pathway describes the progression from gastritis to atrophy, intestinal metaplasia (IM), dysplasia and GC. Patients with atrophy and intestinal metaplasia are considered to have precancerous lesions of GC (PLGC). H. pylori eradication and endoscopy surveillance are currently the only interventions for preventing GC. Better knowledge of the biology of human PLGC may help find stratification markers and contribute to better understanding of biological mechanisms. One way to achieve this is by using co-expression network analysis. Weighted gene co-expression network analysis (WGCNA) is often used to identify modules from co-expression networks and relate them to clinical traits. It also allows identification of driver genes that may be critical for PLGC. AIM: The purpose of this study was to identify co-expression modules and differential gene expression in dyspeptic patients at different stages of the Correa pathway. METHODS: We studied 96 gastric biopsies from 78 patients that were clinically classified as: non-active (n = 10) and chronic-active gastritis (n = 20), atrophy (n = 12), and IM (n = 36). Gene expression of coding RNAs was determined by microarrays and non-coding RNAs by RNA-seq. The WGCNA package was used for network construction, module detection, module preservation and hub and driver gene selection. RESULTS: WGCNA identified 20 modules for coding RNAs and 4 for each miRNA and small RNA class. Modules were associated with antrum and corpus gastric locations, chronic gastritis and IM. Notably, coding RNA modules correlated with the Correa cascade. One was associated with the presence of H. pylori. In three modules, the module eigengene (ME) gradually increased in the stages toward IM, while in three others the inverse relationship was found. One miRNA module was negatively correlated to IM and was used for a mRNA-miRNA integration analysis. WGCNA also uncovered driver genes. Driver genes show both high connectivity within a module and are significantly associated with clinical traits. Some of those genes have been previously involved in H. pylori carcinogenesis, but others are new. Lastly, using similar external transcriptomic data, we confirmed that the discovered mRNA modules were highly preserved. CONCLUSION: Our analysis captured co-expression modules that provide valuable information to understand the pathogenesis of the progression of PLGC.
Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Infecções por Helicobacter/epidemiologia , Mucosa Gástrica/patologia , Gastrite/complicações , Gastrite/epidemiologia , Gastrite/patologia , Atrofia/complicações , Atrofia/patologia , MicroRNAs/genética , Metaplasia/genética , Metaplasia/complicações , Metaplasia/patologia , RNA MensageiroRESUMO
Biological therapies only benefit one-third of patients with Crohn's disease (CD). For this reason, a deeper understanding of the mechanisms by which biologics elicit their effect on intestinal mucosa is needed. Increasing evidence points toward the involvement of long noncoding RNAs (lncRNAs) in the pathogenesis of CD, although their role remains poorly studied. We aimed to characterize lncRNA profiles in the ileum and colon from CD patients and evaluate the effect of anti-TNF-α treatment on their transcription. Terminal ileum and left colon samples from 30 patients (active CD = 10, quiescent CD = 10, and healthy controls (HCs) = 10) were collected for RNA-seq. The patients were classified according to endoscopic activity. Furthermore, biopsies were cultured with infliximab, and their transcriptome was determined by Illumina gene expression array. A total of 678 differentially expressed lncRNAs between the terminal ileum and left colon were identified in HCs, 438 in patients with quiescent CD, and 468 in patients with active CD. Additionally, we identified three new lncRNAs in the ileum associated with CD activity. No differences were observed when comparing the effect of infliximab according to intestinal location, presence of disease (CD vs. HC), and activity (active vs. quiescent). The expression profiles of lncRNAs are associated with the location of intestinal tissue, being very different in the ileum and colon. The presence of CD and disease activity are associated with the differential expression of lncRNAs. No modulatory effect of infliximab has been observed in the lncRNA transcriptome.
Assuntos
Doença de Crohn , RNA Longo não Codificante , Humanos , Doença de Crohn/tratamento farmacológico , Doença de Crohn/genética , Doença de Crohn/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Infliximab/farmacologia , Infliximab/uso terapêutico , Inibidores do Fator de Necrose Tumoral/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Colo/patologia , Íleo/metabolismo , Mucosa Intestinal/metabolismoRESUMO
Long-term adaptive immune memory has been reported among immunocompetent individuals up to eight months following SARS-CoV-2 infection. However, limited data is available in convalescent patients with a solid organ transplant. To investigate this, we performed a thorough evaluation of adaptive immune memory at different compartments (serological, memory B cells and cytokine [IFN-γ, IL-2, IFN-γ/IL12 and IL-21] producing T cells) specific to SARS-CoV-2 by ELISA and FluoroSpot-based assays in 102 convalescent patients (53 with a solid organ transplants (38 kidney, 5 liver, 5 lung and 5 heart transplant) and 49 immunocompetent controls) with different clinical COVID-19 severity (severe, mild and asymptomatic) beyond six months after infection. While similar detectable memory responses at different immune compartments were detected between those with a solid organ transplant and immunocompetent individuals, these responses were predominantly driven by distinct COVID-19 clinical severities (97.6%, 80.5% and 42.1%, all significantly different, were seropositive; 84% vs 75% vs 35.7%, all significantly different, showed IgG-producing memory B cells and 82.5%, 86.9% and 31.6%, displayed IFN-γ producing T cells; in severe, mild and asymptomatic convalescent patients, respectively). Notably, patients with a solid organ transplant with longer time after transplantation did more likely show detectable long-lasting immune memory, regardless of COVID-19 severity. Thus, our study shows that patients with a solid organ transplant are capable of maintaining long-lasting peripheral immune memory after COVID-19 infection; mainly determined by the degree of infection severity.
Assuntos
COVID-19 , Transplante de Órgãos , Anticorpos Antivirais , Humanos , Memória Imunológica , Transplante de Órgãos/efeitos adversos , SARS-CoV-2 , TransplantadosRESUMO
STUDY QUESTION: Is it possible to use free and extracellular vesicle-associated microRNAs (miRNAs) from human endometrial fluid (EF) samples as non-invasive biomarkers for implantative endometrium? SUMMARY ANSWER: The free and extracellular vesicle-associated miRNAs can be used to detect implantative endometrium in a non-invasive manner. WHAT IS KNOWN ALREADY: miRNAs and extracellular vesicles (EVs) from EF have been described as mediators of the embryo-endometrium crosstalk. Therefore, the analysis of miRNA from this fluid could become a non-invasive technique for recognizing implantative endometrium. This analysis could potentially help improve the implantation rates in ART. STUDY DESIGN, SIZE, DURATION: In this prospective study, we first optimized different protocols for EVs and miRNA analyses using the EF of a setup cohort (n = 72). Then, we examined differentially expressed miRNAs in the EF of women with successful embryo implantation (discovery cohort n = 15/validation cohort n = 30) in comparison with those for whom the implantation had failed (discovery cohort n = 15/validation cohort n = 30). Successful embryo implantation was considered when pregnancy was confirmed by vaginal ultrasound showing a gestational sac 4 weeks after embryo transfer (ET). PARTICIPANTS/MATERIALS, SETTING, METHODS: The EF of the setup cohort was obtained before starting fertility treatment during the natural cycle, 16-21 days after the beginning of menstruation. For the discovery and validation cohorts, the EF was collected from women undergoing frozen ET on Day 5, and the samples were collected immediately before ET. In this study, we compared five different methods; two of them based on direct extraction of RNA and the other three with an EV enrichment step before the RNA extraction. Small RNA sequencing was performed to determine the most efficient method and find a predictive model differentiating between implantative and non-implantative endometrium. The models were confirmed using quantitative PCR in two sets of samples (discovery and validation cohorts) with different implantation outcomes. MAIN RESULTS AND THE ROLE OF CHANCE: The protocols using EV enrichment detected more miRNAs than the methods based on direct RNA extraction. The two most efficient protocols (using polymer-based precipitation (PBP): PBP-M and PBP-N) were used to obtain two predictive models (based on three miRNAs) allowing us to distinguish between an implantative and non-implantative endometrium. The first Model 1 (PBP-M) (discovery: AUC = 0.93; P-value = 0.003; validation: AUC = 0.69; P-value = 0.019) used hsa-miR-200b-3p, hsa-miR-24-3p and hsa-miR-148b-3p. Model 2 (PBP-N) (discovery: AUC = 0.92; P-value = 0.0002; validation: AUC = 0.78; P-value = 0.0002) used hsa-miR-200b-3p, hsa-miR-24-3p and hsa-miR-99b-5p. Functional analysis of these miRNAs showed strong association with key implantation processes such as in utero embryonic development or transforming growth factor-beta signaling. LARGE SCALE DATA: The FASTQ data are available in the GEO database (access number GSE178917). LIMITATIONS, REASONS FOR CAUTION: One important factor to consider is the inherent variability among the women involved in the trial and among the transferred embryos. The embryos were pre-selected based on morphology, but neither genetic nor molecular studies were conducted, which would have improved the accuracy of our tests. In addition, a limitation in miRNA library construction is the low amount of input RNA. WIDER IMPLICATIONS OF THE FINDINGS: We describe new non-invasive protocols to analyze miRNAs from small volumes of EF. These protocols could be implemented in clinical practice to assess the status of the endometrium before attempting ET. Such evaluation could help to avoid the loss of embryos transferred to a non-implantative endometrium. STUDY FUNDING/COMPETING INTEREST(S): J.I.-P. was supported by a predoctoral grant from the Basque Government (PRE_2017_0204). This study was partially funded by the Grant for Fertility Innovation (GFI, 2011) from Merck (Darmstadt, Germany). It was also supported by the Spanish Ministry of Economy and Competitiveness MINECO within the National Plan RTI2018-094969-B-I00, the European Union's Horizon 2020 research and innovation program (860303), the Severo Ochoa Centre of Excellence Innovative Research Grant (SEV-2016-0644) and the Instituto de Salud Carlos III (PI20/01131). The funding entities did not play any role in the study design, collection, analysis and interpretation of data, writing of the report or the decision to submit the article for publication. The authors declare no competing interests.
Assuntos
Endométrio , MicroRNAs , Biomarcadores , Feminino , Humanos , MicroRNAs/genética , Polímeros , Gravidez , Estudos Prospectivos , Fatores de Crescimento TransformadoresRESUMO
The description of protective humoral and T cell immune responses specific against SARS-CoV-2 has been reported among immunocompetent (IC) individuals developing COVID-19 infection. However, its characterization and determinants of poorer outcomes among the at-risk solid organ transplant (SOT) patient population have not been thoroughly investigated. Cytokine-producing T cell responses, such as IFN-γ, IL-2, IFN-γ/IL-2, IL-6, IL-21, and IL-5, against main immunogenic SARS-CoV-2 antigens and IgM/IgG serological immunity were tracked in SOT (n = 28) during acute infection and at two consecutive time points over the following 40 days of convalescence and were compared to matched IC (n = 16) patients admitted with similar moderate/severe COVID-19. We describe the development of a robust serological and functional T cell immune responses against SARS-CoV-2 among SOT patients, similar to IC patients during early convalescence. However, at the infection onset, SOT displayed lower IgG seroconversion rates (77% vs. 100%; p = .044), despite no differences on IgG titers, and a trend toward decreased SARS-CoV-2-reactive T cell frequencies, especially against the membrane protein (7 [0-34] vs. 113 [15-245], p = .011, 2 [0-9] vs. 45 [5-74], p = .009, and 0 [0-2] vs. 13 [1-24], p = .020, IFN-γ, IL-2, and IFN-γ/IL-2 spots, respectively). In summary, our data suggest that despite a certain initial delay, SOT population achieve comparable functional immune responses than the general population after moderate/severe COVID-19.
Assuntos
COVID-19 , Transplante de Órgãos , Anticorpos Antivirais , Formação de Anticorpos , Convalescença , Humanos , SARS-CoV-2 , Linfócitos TRESUMO
BACKGROUND: Serum transferrin levels represent an independent predictor of mortality in patients with liver failure. Hepatocyte nuclear factor 4 alpha (HNF4α) is a master regulator of hepatocyte functions. The aim of this study was to explore whether serum transferrin reflects HNF4α activity. METHODS: Factors regulating transferrin expression in alcoholic hepatitis (AH) were assessed via transcriptomic/methylomic analysis as well as chromatin immunoprecipitation coupled to DNA sequencing. The findings were corroborated in primary hepatocytes. Serum and liver samples from 40 patients with advanced liver disease of multiple etiologies were also studied. RESULTS: In patients with advanced liver disease, serum transferrin levels correlated with hepatic transferrin expression (r = 0.51, p = 0.01). Immunohistochemical and biochemical tests confirmed reduced HNF4α and transferrin protein levels in individuals with cirrhosis. In AH, hepatic gene-gene correlation analysis in liver transcriptome revealed an enrichment of HNF4α signature in transferrin-correlated transcriptome while transforming growth factor beta 1 (TGFß1), tumor necrosis factor α (TNFα), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6) negatively associated with transferrin signature. A key regulatory region in transferrin promoter was hypermethylated in patients with AH. In primary hepatocytes, treatment with TGFß1 or the HNF4α inhibitor BI6015 suppressed transferrin production, while exposure to TNFα, IL-1ß, and IL-6 had no effect. The correlation between hepatic HNF4A and transferrin mRNA levels was also seen in advanced liver disease. CONCLUSIONS: Serum transferrin levels constitute a prognostic and mechanistic biomarker. Consequently, they may serve as a surrogate of impaired hepatic HNF4α signaling and liver failure.
Assuntos
Fatores Nucleares de Hepatócito/metabolismo , Hepatócitos/metabolismo , Hepatopatias/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Idoso , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Hepatócitos/patologia , Humanos , Cirrose Hepática/metabolismo , Hepatopatias/patologia , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismoRESUMO
BACKGROUND AND AIMS: As conversion from calcineurin inhibitor to sirolimus (SRL), a mechanistic target of rapamycin inhibitor (mTOR-I), has been shown to enhance immunoregulatory profiles in liver transplant (LT) recipients (LTRs), mTOR-I therapy might allow for increased success of immunosuppression (IS) withdrawal. Our aim was to determine if operational tolerance could be observed in LTRs withdrawn from SRL and if blood/graft tolerance biomarkers were predictive of successful withdrawal. APPROACH AND RESULTS: We performed a prospective trial of SRL monotherapy withdrawal in nonimmune, nonviremic LTRs > 3 years post-LT. SRL was weaned over ~6 months, and biopsies were performed 12 months postweaning or at concern for acute rejection. Twenty-one LTRs consented; 6 were excluded due to subclinical acute rejection on baseline biopsy or other reasons, and 15 underwent weaning (age 61.3 ± 8.8 years; LT to SRL weaning 6.7 ± 3 years). Eight (53%) achieved operational tolerance (TOL). Of the 7 who were nontolerant (non-TOL), 6 had mild acute rejection on biopsy near the end of weaning or at study end; 1 was removed from the trial due to liver cancer recurrence. At baseline preweaning, there were statistically increased blood tolerogenic dendritic cells and cell phenotypes correlating with chronic antigen presentation in the TOL versus non-TOL groups. A previously identified biopsy gene signature accurately predicted TOL versus non-TOL in 12/14 LTRs before weaning. At study end, biopsy staining revealed statistically significant increases in antigen-presenting cell:leukocyte pairings, FOXP3+ /CD4+ T cells, Tbet+ /CD8+ T cells, and lobular dendritic cells in the non-TOL group. CONCLUSIONS: This study evaluated IS withdrawal directly from mTOR-I therapy in LTRs and achieved > 50% operational tolerance. Preweaning gene expression and peripheral blood mononuclear cell profiling may be useful as predictors of successful mTOR-I therapy withdrawal. NCT02062944.
Assuntos
Terapia de Imunossupressão , Imunossupressores/uso terapêutico , Transplante de Fígado , Sirolimo/uso terapêutico , Tolerância ao Transplante , Suspensão de Tratamento , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos ProspectivosRESUMO
Crohn's disease (CD) is a complex and multifactorial illness. There are still considerable gaps in our knowledge regarding its pathophysiology. A transcriptomic approach could shed some light on little-known biological alterations of the disease. We therefore aimed to explore the ileal transcriptome to gain knowledge about CD. We performed whole transcriptome gene expression analysis on ileocecal resections from CD patients and inflammatory bowel disease-free controls, as well as on a CD-independent cohort to replicate selected results. Normalized data were hierarchically clustered, and gene ontology and the molecular network were studied. Cell cultures and molecular methods were used for further evaluations. Genome-wide expression data analysis identified a robust transmembrane immunoglobulin domain-containing 1 (TMIGD1) gene underexpression in CD tissue, which was even more marked in inflamed ileum, and which was replicated in the validation cohort. Immunofluorescence showed TMIGD1 to be located in the apical microvilli of well-differentiated enterocytes but not in intestinal crypt. This apical TMIGD1 was lower in the noninflamed tissue and almost disappeared in the inflamed mucosa of surgical resections. In vitro studies showed hypoxic-dependent TMIGD1 decreased its expression in enterocyte-like cells. The gene enrichment analysis linked TMIGD1 with cell recovery and tissue remodeling in CD settings, involving guanylate cyclase activities. Transcriptomics may be useful for finding new targets that facilitate studies of the CD pathology. This is how TMIGD1 was identified in CD patients, which was related to multiciliate ileal epithelial cell differentiation.NEW & NOTEWORTHY This is a single-center translational research study that aimed to look for key targets involved in Crohn's disease and define molecular pathways through different functional analysis strategies. With this approach, we have identified and described a novel target, the almost unknown TMIGD1 gene, which may be key in the recovery of injured mucosa involving intestinal epithelial cell differentiation.
Assuntos
Doença de Crohn/genética , Células Epiteliais/fisiologia , Íleo/citologia , Glicoproteínas de Membrana/metabolismo , Transcriptoma , Adulto , Células CACO-2 , Estudos de Casos e Controles , Diferenciação Celular , Doença de Crohn/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Glicoproteínas de Membrana/genética , Consumo de OxigênioRESUMO
Liver transplantation (LT) is a successful treatment for patients with liver failure. However, organ shortage results in over 11% of patients losing their chance of a transplant attributed to liver decompensation (LD) and death. Ischemia/reperfusion injury (IRI) following conventional cold storage (CS) is a major cause of injury leading to graft loss after LT. Normothermic machine perfusion (NMP), a method of organ preservation, provides oxygen and nutrition during preservation and allows aerobic metabolism. NMP has recently been shown to enable improved organ utilization and posttransplant outcomes following a phase I and a phase III randomized trial. The aim of the present study is to assess the impact of NMP on reducing IRI and to define the underlying mechanisms. We transplanted and compared 12 NMP with 27 CS-preserved livers by performing gene microarray, immunoprofiling of hepatic lymphocytes, and immunochemistry staining of liver tissues for assessing necrosis, platelet deposition, and neutrophil infiltration, and the status of steatosis after NMP or CS prereperfusion and postreperfusion. Recipients receiving NMP grafts showed significantly lower peak aspartate aminotransferase (AST) levels than those receiving CS grafts. NMP altered gene-expression profiles of liver tissue from proinflammation to prohealing and regeneration. NMP also reduced the number of interferon gamma (IFN-γ) and interleukin (IL)-17-producing T cells and enlarged the CD4pos CD25high CD127neg FOXP3pos regulatory T cell (Treg) pool. NMP liver tissues showed less necrosis and apoptosis in the parenchyma and fewer neutrophil infiltration compared to CS liver tissues. Conclusion: Reduced IRI in NMP recipients was the consequence of the combination of inhibiting inflammation and promoting graft regeneration.
Assuntos
Inflamação/prevenção & controle , Regeneração Hepática , Transplante de Fígado , Fígado/irrigação sanguínea , Preservação de Órgãos/métodos , Perfusão/métodos , Complicações Pós-Operatórias/prevenção & controle , Traumatismo por Reperfusão/prevenção & controle , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Temperatura , Adulto JovemRESUMO
BACKGROUND AND AIMS: Portal hypertension is the main consequence of cirrhosis, responsible for the complications defining clinical decompensation. The only cure for decompensated cirrhosis is liver transplantation, but it is a limited resource and opens the possibility of regenerative therapy. We investigated the potential of primary human amniotic membrane-derived mesenchymal stromal (hAMSCs) and epithelial (hAECs) stem cells for the treatment of portal hypertension and decompensated cirrhosis. METHODS: In vitro: Primary liver sinusoidal endothelial cells (LSECs) and hepatic stellate cells (HSCs) from cirrhotic rats (chronic CCl4 inhalation) were co-cultured with hAMSCs, hAECs or vehicle for 24 hours, and their RNA profile was analysed. In vivo: CCl4-cirrhotic rats received 4x106 hAMSCs, 4x106 hAECs, or vehicle (NaCl 0.9%) (intraperitoneal). At 2-weeks we analysed: a) portal pressure (PP) and hepatic microvascular function; b) LSECs and HSCs phenotype; c) hepatic fibrosis and inflammation. RESULTS: In vitro experiments revealed sinusoidal cell phenotype amelioration when co-cultured with stem cells. Cirrhotic rats receiving stem cells, particularly hAMSCs, had significantly lower PP than vehicle-treated animals, together with improved liver microcirculatory function. This hemodynamic amelioration was associated with improvement in LSECs capillarization and HSCs de-activation, though hepatic collagen was not reduced. Rats that received amnion derived stem cells had markedly reduced hepatic inflammation and oxidative stress. Finally, liver function tests significantly improved in rats receiving hAMSCs. CONCLUSIONS: This preclinical study shows that infusion of human amniotic stem cells effectively decreases PP by ameliorating liver microcirculation, suggesting that it may represent a new treatment option for advanced cirrhosis with portal hypertension.
Assuntos
Âmnio , Hipertensão Portal , Animais , Células Endoteliais , Humanos , Hipertensão Portal/patologia , Hipertensão Portal/terapia , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/patologia , Cirrose Hepática/terapia , Microcirculação , Ratos , Células-Tronco , Resistência VascularRESUMO
CD4+CD25+FOXP3+ Tregs constitute a heterogeneous lymphocyte subpopulation essential for curtailing effector T cells and establishing peripheral tolerance. Calcineurin inhibitors (CNIs) are among the most effective agents in controlling effector T-cell responses in humans. However, CNIs also reduce the size of the Treg pool. The functional consequences of this negative effect and the mechanisms responsible remain to be elucidated. We report here that CNIs compromise the overall Treg immunoregulatory capacity to a greater extent than would be predicted by the reduction in the size of the Treg compartment, given that they selectively promote the apoptosis of the resting and activated Treg subsets that are known to display the most powerful suppressive function. These effects are caused by reduced access to IL-2, because Tregs remain capable of translocating NFAT even in the presence of high CNI levels. Exogenous IL-2 restores the phenotypic changes and overall gene-expression effects exerted by CNIs and can even promote Treg expansion by enhancing antiapoptotic Bcl-2 expression. In a skin transplant model, the addition of IL-2 synergizes with CNIs treatment, promoting intragraft accumulation of Tregs and prolonged allograft survival. Hence, the combination of IL-2 and CNIs constitutes an optimal immunomodulatory regimen that enhances the pool of suppressive Treg subsets while effectively controlling cytopathic T cells.
Assuntos
Inibidores de Calcineurina/farmacologia , Interleucina-2/farmacologia , Linfócitos T/efeitos dos fármacos , Adulto , Idoso , Animais , Apoptose , Estudos de Casos e Controles , Doença Crônica , Doença Hepática Terminal/cirurgia , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Sobrevivência de Enxerto , Humanos , Terapia de Imunossupressão , Imunossupressores/farmacologia , Interleucina-7/metabolismo , Transplante de Rim , Antígenos Comuns de Leucócito/metabolismo , Transplante de Fígado , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fenótipo , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Tacrolimo/farmacologia , Tolerância ao TransplanteRESUMO
Liver fibrosis is the excessive accumulation of extracellular matrix proteins that occurs in chronic liver disease. Ubiquitination is a post-translational modification that is crucial for a plethora of physiological processes. Even though the ubiquitin system has been implicated in several human diseases, the role of ubiquitination in liver fibrosis remains poorly understood. Here, multi-omics approaches were used to address this. Untargeted metabolomics showed that carbon tetrachloride (CCl4)-induced liver fibrosis promotes changes in the hepatic metabolome, specifically in glycerophospholipids and sphingolipids. Gene ontology analysis of public deposited gene array-based data and validation in our mouse model showed that the biological process "protein polyubiquitination" is enriched after CCl4-induced liver fibrosis. Finally, by using transgenic mice expressing biotinylated ubiquitin (bioUb mice), the ubiquitinated proteome was isolated and characterized by mass spectrometry in order to unravel the hepatic ubiquitinated proteome fingerprint in CCl4-induced liver fibrosis. Under these conditions, ubiquitination appears to be involved in the regulation of cell death and survival, cell function, lipid metabolism, and DNA repair. Finally, ubiquitination of proliferating cell nuclear antigen (PCNA) is induced during CCl4-induced liver fibrosis and associated with the DNA damage response (DDR). Overall, hepatic ubiquitome profiling can highlight new therapeutic targets for the clinical management of liver fibrosis.
Assuntos
Genômica , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Ubiquitinação , Animais , Tetracloreto de Carbono , Dano ao DNA , Reparo do DNA , Células Hep G2 , Humanos , Cirrose Hepática/induzido quimicamente , Regeneração Hepática , Camundongos Endogâmicos C57BL , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteoma/metabolismoRESUMO
BACKGROUND & AIMS: A substantial proportion of pediatric liver transplant recipients develop subclinical chronic allograft injury. We studied whether there are distinct patterns of injury based on histopathologic features and identified associated immunologic profiles. METHODS: We conducted a cross-sectional study of 157 stable, long-term pediatric recipients of transplanted livers (70 boys; > 6 years old at time of transplantation; mean, 8.9 ± 3.46 years after liver transplantation) who underwent liver biopsy analysis from August 13, 2012, through May 1, 2014. Participants had received livers from a living or deceased donor and had consistently normal results from liver tests. Liver biopsy specimens were scored by a central pathologist; an unsupervised hierarchical cluster analysis of histologic features was used to sort biopsy samples into 3 clusters. We conducted transcriptional and cytometric analyses of liver tissue samples and performed a systems biology analysis that incorporated clinical, serologic, histologic, and transcriptional data. RESULTS: The mean level of alanine aminotransferase in participants was 27.6 ± 14.57 U/L, and the mean level of γ-glutamyl transferase was 17.4 ± 7.93 U/L. Cluster 1 was characterized by interface activity (n = 34), cluster 2 was characterized by periportal or perivenular fibrosis without interface activity (n = 45), and cluster 3 had neither feature (n = 78). We identified a module of genes whose expression correlated with levels of alanine aminotransferase, class II donor-specific antibody, portal inflammation, interface activity, perivenular inflammation, portal and perivenular fibrosis, and cluster assignment. The module was enriched in genes that regulate T-cell-mediated rejection (TCMR) of liver and other transplanted organs. Functional pathway analysis showed overrepresentation of TCMR gene sets for cluster 1 but not clusters 2 or 3. CONCLUSION: In an analysis of biopsies from an apparently homogeneous group of stable, long-term pediatric liver transplant recipients with consistently normal liver test results, we found evidence of chronic graft injury (inflammation and/or fibrosis). Biopsy samples with interface activity had a gene expression pattern associated with TCMR.
Assuntos
Aloenxertos/patologia , Rejeição de Enxerto/patologia , Transplante de Fígado/efeitos adversos , Fígado/patologia , Adolescente , Aloenxertos/lesões , Biópsia , Criança , Doença Crônica , Estudos Transversais , Feminino , Rejeição de Enxerto/etiologia , Humanos , Fígado/lesões , Testes de Função Hepática , Masculino , Fatores de Tempo , Adulto JovemRESUMO
BACKGROUND: In cirrhosis, a decrease in hepatic venous pressure gradient (HVPG) > 10% after acute iv propranolol (HVPG response) is associated with a lower risk of decompensation and death. Only a part of patients are HVPG responders and there are no accurate non-invasive markers to identify them. We aimed at discovering metabolomic biomarkers of HVPG responders to propranolol. METHODS: Sixty-six patients with cirrhosis and HVPG ≥ 10 mm Hg in whom the acute HVPG response to propranolol was assessed, were prospectively included. A targeted metabolomic serum analysis using ultrahigh-performance liquid chromatography coupled to mass spectrometry was performed. Different combinations of 2-3 metabolites identifying HVPG responders (HVPG reduction > 10%) were obtained by stepwise logistic regression. The best of these model (AUROC, Akaike criterion) underwent internal cross-validation and cut-offs to classify responders/non-responders was proposed. RESULTS: A total of 41/66 (62%) patients were HVPG responders. Three hundred and eighty-nine metabolites were detected and 177 were finally eligible. Eighteen metabolites were associated to the HVPG response at univariate analysis; at multivariable analysis, a model including a phosphatidylcholine (PC(P-16:0/22:6)) and a free fatty acid (20:2(n-6), eicosadienoic acid) performed well for HVPG response, with an AUROC of 0.801 (0.761 at internal validation). The cut-off 0.629 was the most efficient for overall classification (49/66 patients correctly classified). Two cut-off values allowed identifying responders (0.688, PPV 84%) and non-responders (0.384, NPV 82%) with undetermined values for 17/66 patients. Clinical variables did not add to the model. CONCLUSIONS: The combination of two metabolites helps at identifying HVPG responders to acute propranolol. It could be a useful non-invasive test to classify the HVPG response to propranolol.
Assuntos
Antagonistas Adrenérgicos beta/administração & dosagem , Hipertensão Portal/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Metabolômica , Propranolol/administração & dosagem , Idoso , Biomarcadores/sangue , Feminino , Humanos , Hipertensão Portal/sangue , Hipertensão Portal/complicações , Infusões Intravenosas , Cirrose Hepática/sangue , Cirrose Hepática/complicações , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Valor Preditivo dos Testes , Pressão Venosa/efeitos dos fármacosRESUMO
BACKGROUND: Anti-tumour necrosis factor α (TNFα) therapy effectively induces and maintains remission in Crohn's disease (CD). Up to 40% of patients, however, fail to respond to anti-TNFα. OBJECTIVE: To identify the mechanisms underlying the persistence of mucosal lesions in patients who fail to respond to anti-TNFα therapy. DESIGN: An observational study based on whole-genome transcriptional analysis was carried out using intestinal biopsy specimens from patients with CD receiving (n=12) or not (n=10) anti-TNFα therapy. The transcriptional signature of responders was compared with that of non-responders after anti-TNFα therapy. Controls with non-inflammatory bowel disease (non-IBD) (n=17) were used for comparisons. Genes of interest were validated by real-time RT-PCR in an independent cohort of patients with CD receiving (n=17) or not (n=16) anti-TNFα and non-IBD controls (n=7). RESULTS: We confirmed that response to anti-TNFα is accompanied by significant regulation of a large number of genes, including IL1B, S100A8, CXCL1, which correlated with endoscopic activity. Remarkably, patients who failed to respond to anti-TNFα showed a mixed signature, maintaining increased expression of IL1B, IL17A and S100A8, while showing significant modulation of other genes commonly upregulated in active CD, including IL6 and IL23p19. CONCLUSIONS: Our results show that anti-TNFα therapy significantly downregulates a subset of inflammatory genes even in patients who fail to achieve endoscopic remission, suggesting that these genes may not be dominant in driving inflammation in non-responders. On the other hand, we identified IL1B and IL17A as genes that remained altered in non-responders, pointing to potentially more relevant targets for modulating mucosal damage in refractory patients.