Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 541, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714838

RESUMO

Age-related diseases pose great challenges to health care systems worldwide. During aging, endothelial senescence increases the risk for cardiovascular disease. Recently, it was described that Phosphatase 1 Nuclear Targeting Subunit (PNUTS) has a central role in cardiomyocyte aging and homeostasis. Here, we determine the role of PNUTS in endothelial cell aging. We confirm that PNUTS is repressed in senescent endothelial cells (ECs). Moreover, PNUTS silencing elicits several of the hallmarks of endothelial aging: senescence, reduced angiogenesis and loss of barrier function. Findings are validate in vivo using endothelial-specific inducible PNUTS-deficient mice (Cdh5-CreERT2;PNUTSfl/fl), termed PNUTSEC-KO. Two weeks after PNUTS deletion, PNUTSEC-KO mice present severe multiorgan failure and vascular leakage. Transcriptomic analysis of PNUTS-silenced HUVECs and lungs of PNUTSEC-KO mice reveal that the PNUTS-PP1 axis tightly regulates the expression of semaphorin 3B (SEMA3B). Indeed, silencing of SEMA3B completely restores barrier function after PNUTS loss-of-function. These results reveal a pivotal role for PNUTS in endothelial homeostasis through a SEMA3B downstream pathway that provides a potential target against the effects of aging in ECs.


Assuntos
Senescência Celular , Células Endoteliais da Veia Umbilical Humana , Semaforinas , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Semaforinas/metabolismo , Semaforinas/genética
2.
Commun Biol ; 3(1): 265, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457386

RESUMO

Blood vessels are constantly exposed to shear stress, a biomechanical force generated by blood flow. Normal shear stress sensing and barrier function are crucial for vascular homeostasis and are controlled by adherens junctions (AJs). Here we show that AJs are stabilized by the shear stress-induced long non-coding RNA LASSIE (linc00520). Silencing of LASSIE in endothelial cells impairs cell survival, cell-cell contacts and cell alignment in the direction of flow. LASSIE associates with junction proteins (e.g. PECAM-1) and the intermediate filament protein nestin, as identified by RNA affinity purification. The AJs component VE-cadherin showed decreased stabilization, due to reduced interaction with nestin and the microtubule cytoskeleton in the absence of LASSIE. This study identifies LASSIE as link between nestin and VE-cadherin, and describes nestin as crucial component in the endothelial response to shear stress. Furthermore, this study indicates that LASSIE regulates barrier function by connecting AJs to the cytoskeleton.


Assuntos
Células Endoteliais/metabolismo , RNA Longo não Codificante/metabolismo , Fenômenos Biomecânicos , Células Endoteliais da Veia Umbilical Humana , Humanos , Estresse Mecânico
3.
J Clin Invest ; 130(2): 754-767, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31671076

RESUMO

The mechanisms that modulate the kinetics of muscle relaxation are critically important for muscle function. A prime example of the impact of impaired relaxation kinetics is nemaline myopathy caused by mutations in KBTBD13 (NEM6). In addition to weakness, NEM6 patients have slow muscle relaxation, compromising contractility and daily life activities. The role of KBTBD13 in muscle is unknown, and the pathomechanism underlying NEM6 is undetermined. A combination of transcranial magnetic stimulation-induced muscle relaxation, muscle fiber- and sarcomere-contractility assays, low-angle x-ray diffraction, and superresolution microscopy revealed that the impaired muscle-relaxation kinetics in NEM6 patients are caused by structural changes in the thin filament, a sarcomeric microstructure. Using homology modeling and binding and contractility assays with recombinant KBTBD13, Kbtbd13-knockout and Kbtbd13R408C-knockin mouse models, and a GFP-labeled Kbtbd13-transgenic zebrafish model, we discovered that KBTBD13 binds to actin - a major constituent of the thin filament - and that mutations in KBTBD13 cause structural changes impairing muscle-relaxation kinetics. We propose that this actin-based impaired relaxation is central to NEM6 pathology.


Assuntos
Proteínas Musculares/metabolismo , Relaxamento Muscular , Miopatias da Nemalina/metabolismo , Sarcômeros/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Humanos , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Sarcômeros/patologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
4.
Noncoding RNA ; 5(1)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893946

RESUMO

Cardiovascular diseases are the most prominent cause of death in Western society, especially in the elderly. With the increasing life expectancy, the number of patients with cardiovascular diseases will rise in the near future, leading to an increased healthcare burden. There is a need for new therapies to treat this growing number of patients. The discovery of long non-coding RNAs has led to a novel group of molecules that could be considered for their potential as therapeutic targets. This review presents an overview of long non-coding RNAs that are regulated in vascular disease and aging and which might therefore give insight into new pathways that could be targeted to diagnose, prevent, and/or treat vascular diseases.

5.
J Mol Cell Biol ; 11(10): 860-867, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31152659

RESUMO

Cardiovascular diseases (CVDs) are the main cause of morbidity and mortality in Western society and present an important age-related risk. With the constant rise in life expectancy, prevalence of CVD in the population will likely increase further. New therapies, especially in the elderly, are needed to combat CVD. This review is focused on the role of long noncoding RNA (lncRNA) in CVD. RNA sequencing experiments in the past decade showed that most RNA does not code for protein, but many RNAs function as ncRNA. Here, we summarize the recent findings of lncRNA regulation in the diseased heart. The potential use of these RNAs as biomarkers of cardiac disease prediction is also discussed.


Assuntos
Envelhecimento/genética , Doenças Cardiovasculares/genética , RNA Longo não Codificante/genética , Animais , Humanos
6.
FEBS J ; 286(1): 46-65, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30548183

RESUMO

Previous studies have demonstrated that activation of calcineurin induces pathological cardiac hypertrophy (CH). In these studies, loss-of-function was mostly achieved by systemic administration of the calcineurin inhibitor cyclosporin A. The lack of conditional knockout models for calcineurin function has impeded progress toward defining the role of this protein during the onset and the development of CH in adults. Here, we exploited a mouse model of CH based on the infusion of a hypertensive dose of angiotensin II (AngII) to model the role of calcineurin in CH in adulthood. AngII-induced CH in adult mice was reduced by treatment with cyclosporin A, without affecting the associated increase in blood pressure, and also by induction of calcineurin deletion in adult mouse cardiomyocytes, indicating that cardiomyocyte calcineurin is required for AngII-induced CH. Surprisingly, cardiac-specific deletion of calcineurin, but not treatment of mice with cyclosporin A, significantly reduced AngII-induced cardiac fibrosis and apoptosis. Analysis of profibrotic genes revealed that AngII-induced expression of Tgfß family members and Lox was not inhibited by cyclosporin A but was markedly reduced by cardiac-specific calcineurin deletion. These results show that AngII induces a direct, calcineurin-dependent prohypertrophic effect in cardiomyocytes, as well as a systemic hypertensive effect that is independent of calcineurin activity.


Assuntos
Calcineurina/fisiologia , Cardiomegalia/patologia , Fibrose/patologia , Miócitos Cardíacos/patologia , Angiotensina II/toxicidade , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Progressão da Doença , Fibrose/induzido quimicamente , Fibrose/metabolismo , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Vasoconstritores/toxicidade
8.
Nat Med ; 23(2): 200-212, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28067899

RESUMO

Heritable thoracic aortic aneurysms and dissections (TAAD), including Marfan syndrome (MFS), currently lack a cure, and causative mutations have been identified for only a fraction of affected families. Here we identify the metalloproteinase ADAMTS1 and inducible nitric oxide synthase (NOS2) as therapeutic targets in individuals with TAAD. We show that Adamts1 is a major mediator of vascular homeostasis, given that genetic haploinsufficiency of Adamts1 in mice causes TAAD similar to MFS. Aortic nitric oxide and Nos2 levels were higher in Adamts1-deficient mice and in a mouse model of MFS (hereafter referred to as MFS mice), and Nos2 inactivation protected both types of mice from aortic pathology. Pharmacological inhibition of Nos2 rapidly reversed aortic dilation and medial degeneration in young Adamts1-deficient mice and in young or old MFS mice. Patients with MFS showed elevated NOS2 and decreased ADAMTS1 protein levels in the aorta. These findings uncover a possible causative role for the ADAMTS1-NOS2 axis in human TAAD and warrant evaluation of NOS2 inhibitors for therapy.


Assuntos
Proteína ADAMTS1/genética , Aorta/metabolismo , Aneurisma Aórtico/genética , Dissecção Aórtica/genética , Síndrome de Marfan/genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico/metabolismo , Proteína ADAMTS1/metabolismo , Adulto , Idoso , Dissecção Aórtica/metabolismo , Animais , Aorta/efeitos dos fármacos , Aneurisma Aórtico/metabolismo , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Fibrilina-1/genética , Técnicas de Silenciamento de Genes , Haploinsuficiência , Humanos , Immunoblotting , Masculino , Síndrome de Marfan/metabolismo , Camundongos , Pessoa de Meia-Idade , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
9.
Mol Cell Biol ; 35(19): 3409-22, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26217013

RESUMO

Emerging evidence indicates that the metalloproteinase Adamts-1 plays a significant role in the pathophysiology of vessel remodeling, but little is known about the signaling pathways that control Adamts-1 expression. We show that vascular endothelial growth factor (VEGF), angiotensin-II, interleukin-1ß, and tumor necrosis factor α, stimuli implicated in pathological vascular remodeling, increase Adamts-1 expression in endothelial and vascular smooth muscle cells. Analysis of the intracellular signaling pathways implicated in this process revealed that VEGF and angiotensin-II upregulate Adamts-1 expression via activation of differential signaling pathways that ultimately promote functional binding of the NFAT or C/EBPß transcription factors, respectively, to the Adamts-1 promoter. Infusion of mice with angiotensin-II triggered phosphorylation and nuclear translocation of C/EBPß proteins in aortic cells concomitantly with an increase in the expression of Adamts-1, further underscoring the importance of C/EBPß signaling in angiotensin-II-induced upregulation of Adamts-1. Similarly, VEGF promoted NFAT activation and subsequent Adamts-1 induction in aortic wall in a calcineurin-dependent manner. Our results demonstrate that Adamts-1 upregulation by inducers of pathological vascular remodeling is mediated by specific signal transduction pathways involving NFAT or C/EBPß transcription factors. Targeting of these pathways may prove useful in the treatment of vascular disease.


Assuntos
Proteínas ADAM/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/fisiologia , Fatores de Transcrição NFATC/metabolismo , Remodelação Vascular , Proteínas ADAM/genética , Proteína ADAMTS1 , Animais , Aorta/enzimologia , Sequência de Bases , Calcineurina/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Camundongos Knockout , Dados de Sequência Molecular , Transdução de Sinais , Ativação Transcricional , Fator A de Crescimento do Endotélio Vascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA