Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Fluoresc ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505365

RESUMO

Millions of deaths occur each year due to the late diagnosis of abnormal cellular growth within the body. However, the devastating impact of this can be significantly reduced if cancer metastasis is detected early through the use of enzymatic biomarkers. Among several biomarkers, γ-glutamyltranspeptidase (GGT) stands out as a member of the aminopeptidase family. It is primarily found on the surface of cancer cells such as glioma, ovarian, lung, and prostate cancer, without being overexpressed in normal cells or tissues. Recent years have witnessed significant progress in the field of cancer monitoring and imaging. Fluorescence sensing techniques have been employed, utilizing organic small molecular probes with enzyme-specific recognition sites. These probes emit a fluorescent signal upon interacting with GGT, enabling the imaging, identification, and differentiation of normal and cancerous cells, tissues, and organs. This review article presents a concise overview of recent progress in fluorescent probes developed for the selective detection of GGT, focusing on their applications in cancer imaging. It highlights the observed alterations in the fluorescence and absorption spectra of the probes before and after interaction with GGT. Additionally, the study investigates the changes in the probe molecule's structure following enzyme treatment, evaluates the sensor's detection limit, and consolidated imaging studies conducted using confocal fluorescence analysis. This comprehensive survey is expected to contribute to the advancement of sensing techniques for biomarker detection and cancer imaging, providing valuable insights for refining methodologies and inspiring future developments in this field.

2.
J Fluoresc ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37644375

RESUMO

Sensors play a critical role in the detection and monitoring of various substances present in our environment, providing us with valuable information about the world around us. Within the field of sensor development, one area that holds particular importance is the detection of small molecules. Small molecules encompass a wide range of organic or inorganic compounds with low molecular weight, typically below 900 Daltons including gases, volatile organic compounds, solvents, pesticides, drugs, biomarkers, toxins, and pollutants. The accurate and efficient detection of these small molecules has attracted significant interest from the scientific community due to its relevance in diverse fields such as environmental pollutants monitoring, medical diagnostics, industrial optimization, healthcare remedies, food safety, ecosystems, and aquatic and terrestrial life preservation. To meet the demand for precise and efficient monitoring of small molecules, this summary aims to provide an overview of recent advancements in sensing and quantification strategies for various organic small molecules including Hydrazine, Glucose, Morpholine, Ethanol amine, Nitrosamine, Oxygen, Nitro-aromatics, Phospholipids, Carbohydrates, Antibiotics, Pesticides, Drugs, Adenosine Triphosphate, Aromatic Amine, Glutathione, Hydrogen Peroxide, Acetone, Methyl Parathion, and Thiophenol. The focus is on understanding the receptor sensing mechanism, along with the electrical, optical, and electrochemical response. Additionally, the variations in UV-visible spectral properties of the ligands upon treatment with the receptor, fluorescence and absorption titration analysis for limit of detection (LOD) determination, and bioimaging analysis are discussed wherever applicable. It is anticipated that the information gathered from this literature survey will be helpful for the perusal of innovation regarding sensing strategies.

3.
Molecules ; 28(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570800

RESUMO

The present study reports the one-step synthesis of several 3-formyl-4-hydroxycouramin-derived enamines (4a-4i) in good yields (65-94%). The characterization of the synthesized compounds was carried out via advanced analytical and spectroscopic techniques, such as melting point, electron impact mass spectrometry (EI-MS), 1H-NMR, 13C-NMR, elemental analysis, FTIR, and UV-Visible spectroscopy. The reaction conditions were optimized, and the maximum yield was obtained at 3-4 h of reflux of the reactants, using 2-butanol as a solvent. The potato disc tumor assay was used to assess Agrobacterium tumefaciens-induced tumors to evaluate the anti-tumor activities of compounds (4a-4i), using Vinblastine as a standard drug. The compound 4g showed the lowest IC50 value (1.12 ± 0.2), which is even better than standard Vinblastine (IC50 7.5 ± 0.6). For further insight into their drug actions, an in silico docking of the compounds was also carried out against the CDK-8 protein. The binding energy values of compounds were found to agree with the experimental results. The compounds 4g and 4h showed the best affinities toward protein, with a binding energy value of -6.8 kcal/mol.


Assuntos
4-Hidroxicumarinas , Antineoplásicos , Estrutura Molecular , Relação Estrutura-Atividade , Vimblastina , Simulação de Acoplamento Molecular , Antineoplásicos/química
4.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682583

RESUMO

Riboswitches are regulatory noncoding RNAs found in bacteria, fungi and plants, that modulate gene expressions through structural changes in response to ligand binding. Understanding how ligands interact with riboswitches in solution can shed light on the molecular mechanisms of this ancient regulators. Previous studies showed that riboswitches undergo global conformation changes in response to ligand binding to relay information. Here, we report conformation switching models of the recently discovered tetrahydrofolic acid-responsive second class of tetrahydrofolate (THF-II) riboswitches in response to ligand binding. Using a combination of selective 2'-hydroxyl acylation, analyzed by primer extension (SHAPE) assay, 3D modeling and small-angle X-ray scattering (SAXS), we found that the ligand specifically recognizes and reshapes the THF-II riboswitch loop regions, but does not affect the stability of the P3 helix. Our results show that the THF-II riboswitch undergoes only local conformation changes in response to ligand binding, rearranging the Loop1-P3-Loop2 region and rotating Loop1 from a ~120° angle to a ~75° angle. This distinct conformation changes suggest a unique regulatory mechanism of the THF-II riboswitch, previously unseen in other riboswitches. Our findings may contribute to the fields of RNA sensors and drug design.


Assuntos
Riboswitch , Ligantes , Conformação de Ácido Nucleico , Espalhamento a Baixo Ângulo , Tetra-Hidrofolatos/química , Tetra-Hidrofolatos/genética , Tetra-Hidrofolatos/metabolismo , Difração de Raios X
5.
Molecules ; 27(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684301

RESUMO

The present work reports the synthesis, characterization, and antimicrobial activities of adipic acid-capped silver nanoparticles (AgNPs@AA) and their utilization for selective detection of Hg2+ ions in an aqueous solution. The AgNPs were synthesized by the reduction of Ag+ ions with NaBH4 followed by capping with adipic acid. Characterization of as-synthesized AgNPs@AA was carried out by different techniques, including UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Dynamic Light Scattering (DLS), and zeta potential (ZP). In the UV-Vis absorption spectrum, the characteristic absorption band for AgNPs was observed at 404 nm. The hydrodynamic size of as-synthesized AgNPs was found to be 30 ± 5.0 nm. ZP values (-35.5 ± 2.4 mV) showed that NPs possessed a negative charge due to carboxylate ions and were electrostatically stabilized. The AgNPs show potential antimicrobial activity against clinically isolated pathogens. These AgNPs were found to be selectively interacting with Hg2+ in an aqueous solution at various concentrations. A calibration curve was constructed by plotting concentration as abscissa and absorbance ratio (AControl - AHg/AControl) as ordinate. The linear range and limit of detection (LOD) of Hg2+ were 0.6-1.6 µM and 0.12 µM, respectively. A rapid response time of 4 min was found for the detection of Hg2+ by the nano-probe. The effect of pH and temperature on the detection of Hg2+ was also investigated. The nano-probe was successfully applied for the detection of Hg2+ from tap and river water.


Assuntos
Anti-Infecciosos , Mercúrio , Nanopartículas Metálicas , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Ácidos Carboxílicos , Colorimetria , Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Nucleic Acids Res ; 47(18): 9818-9828, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31396619

RESUMO

Packaging of phage phi29 genome requires the ATPase gp16 and prohead RNA (pRNA). The highly conserved pRNA forms the interface between the connector complex and gp16. Understanding how pRNA interacts with gp16 under packaging conditions can shed light on the molecular mechanism of the packaging motor. Here, we present 3D models of the pRNA-gp16 complex and its conformation change in response to ATP or ADP binding. Using a combination of crystallography, small angle X-ray scattering and chemical probing, we find that the pRNA and gp16 forms a 'Z'-shaped complex, with gp16 specifically binds to pRNA domain II. The whole complex closes in the presence of ATP, and pRNA domain II rotates open as ATP hydrolyzes, before resetting after ADP is released. Our results suggest that pRNA domain II actively participates in the packaging process.


Assuntos
Fagos Bacilares/genética , Empacotamento do DNA/genética , RNA Viral/genética , Proteínas Virais/genética , Difosfato de Adenosina/genética , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/genética , Sítios de Ligação , Cristalografia por Raios X , DNA Viral/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Conformação de Ácido Nucleico , RNA Viral/química , Espalhamento a Baixo Ângulo , Transdução de Sinais/genética , Proteínas Virais/química , Montagem de Vírus/genética
7.
Molecules ; 26(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067122

RESUMO

Organic materials development, especially in terms of nonlinear optical (NLO) performance, has become progressively more significant owing to their rising and promising applications in potential photonic devices. Organic moieties such as carbazole and quinoline play a vital role in charge transfer applications in optoelectronics. This study reports and characterizes the donor-acceptor-donor-π-acceptor (D-A-D-π-A) configured novel designed compounds, namely, Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1. We further analyze the structure-property relationship between the quinoline-carbazole compounds for which density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were performed at the B3LYP/6-311G(d,p) level to obtain the optimized geometries, natural bonding orbital (NBO), NLO analysis, electronic properties, and absorption spectra of all mentioned compounds. The computed values of λmax, 364, 360, and 361 nm for Q3, Q4, and Q5 show good agreement of their experimental values: 349, 347, and 323 nm, respectively. The designed compounds (Q3D1-Q5D1) exhibited a smaller energy gap with a maximum redshift than the reference molecules (Q3-Q5), which govern their promising NLO behavior. The NBO evaluation revealed that the extended hyperconjugation stabilizes these systems and caused a promising NLO response. The dipole polarizabilities and hyperpolarizability (ß) values of Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1 exceed those of the reference Q3, Q4, and Q5 molecules. These data suggest that the NLO active compounds, Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1, may find their place in future hi-tech optical devices.

8.
BMC Biotechnol ; 20(1): 3, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31918694

RESUMO

BACKGROUND: Insulin controls hyperglycemia caused by diabetes, and virtually all treatments require exogenous insulin. However, the product's extensive post-translational modifications have hindered the manufacture of recombinant insulin. RESULT: Here we report a novel production method for a monomeric B22Asp desB30 insulin analog (B22D desB30 insulin). Its precursor, DPIP, is fused to an N-terminal chitin-binding domain and intein self-cleavage tag. The fusion protein is expressed and purified from E. coli and immobilized on chitin resins. DPIP is then released using an optimized pH shift and converted to mature insulin via trypsin digest. The resulting product appears monomeric, > 90% pure and devoid of any exogenous enzyme. CONCLUSION: Thus, biologically active insulin analog can be efficiently produced in bacteria and potentially applicable in the treatment of human diabetes.


Assuntos
Insulina/análogos & derivados , Proinsulina/genética , Proteínas Recombinantes de Fusão/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Insulina/genética , Inteínas , Engenharia de Proteínas , Multimerização Proteica , Processamento de Proteína , Proteínas Recombinantes de Fusão/genética
9.
Molecules ; 24(2)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654516

RESUMO

The present study focuses on the design and synthesis of a cage-like organic skeleton containing two triazole rings jointed via imine linkage. These molecules can act as urease inhibitors. The in-vitro urease inhibition screening results showed that the combination of the two triazole skeleton in the cage-like morphology exhibited comparable urease inhibition activity to that of the reference thiourea while the metallic complexation, especially with copper, nickel, and palladium, showed excellent activity results with IC50 values of 0.94 ± 0.13, 3.71 ± 0.61, and 7.64 ± 1.21 (3a⁻c), and 1.20 ± 0.52, 3.93 ± 0.45, and 12.87 ± 2.11 µM (4a⁻c). However, the rest of compounds among the targeted series exhibited a low to moderate enzyme inhibition potential. To better understand the compounds' underlying mechanisms of the inhibitory effect (3a and 4a) and their most active metal complexes (3b and 4b), we performed an enzymatic kinetic analysis using the Lineweaver⁻Burk plot in the presence of different concentrations of inhibitors to represent the non-competitive inhibition nature of the compounds, 3a, 4a, and 4b, while mixed type inhibition was represented by the compound, 3b. Moreover, molecular docking confirmed the binding interactive behavior of 3a within the active site of the target protein.


Assuntos
Complexos de Coordenação/síntese química , Inibidores Enzimáticos/síntese química , Triazóis/síntese química , Urease/antagonistas & inibidores , Canavalia/enzimologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Níquel/química , Paládio/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia , Urease/química
10.
Molecules ; 24(7)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934936

RESUMO

We report here the synthesis, characterization, and antibacterial evaluation of transition metal complexes of Ni, Cu, Co, Mn, Zn, and Cd (6a⁻f), using a Schiff base ligand (5) derived from naproxen (an anti-inflammatory drug) and 5-bromosalicylaldehyde by a series of reactions. The ligand and the synthesized complexes were characterized by elemental analysis, UV-Visible, FTIR, and XRD techniques. The ligand 5 behaves as a bidentate donor and coordinates with metals in square planar or tetrahedral fashion. In order to evaluate its bioactivity profile, we screened the Schiff base ligand and its metal complexes (6a⁻f) against different species of bacteria and the complexes were found to exhibit significant antibacterial activity. The complexes showed more potency against Bacillus subtilis as compared to the other species. Moreover, we modeled these complexes' binding affinity against COX1 protein using computational docking.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Metais/química , Naproxeno/química , Bases de Schiff/química , Antibacterianos/síntese química , Técnicas de Química Sintética , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Análise Espectral , Relação Estrutura-Atividade
11.
Cell Physiol Biochem ; 48(5): 1915-1927, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30092596

RESUMO

BACKGROUND/AIMS: RNA elements such as catalytic RNA, riboswitch, microRNA, and long non coding RNA (lncRNA) play central roles in many cellular processes. Studying diverse RNA functions require large quantities of RNA for precise structure analysis. Current RNA structure and function studies can benefit from improved RNA quantity and quality, simpler separation procedure and enhanced accuracy of structural analysis. METHODS: Here we present an optimized protocol for analyzing the structure of any RNA, including in vitro transcription, size-exclusion chromatography (SEC) based denaturing purification and improved secondary structure analysis by chemical probing. RESULTS: We observed that higher Mg2+, nucleoside triphosphate (NTP) concentrations and longer reaction duration can improve the RNA yield from in vitro transcription, specifically for longer and more complicated constructs. Our improved SEC-based denaturing RNA purification effectively halved the experiment duration and labor without introducing any contaminant. Finally, this study increased the accuracy and signal-to-noise ratio (SNR) of selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemical probing for analyzing RNA structure. CONCLUSION: Part or all of our modified method can improve almost any RNA-related study from protein-RNA interaction analysis to crystallography.


Assuntos
RNA/metabolismo , Acilação , Cromatografia em Gel , Técnicas In Vitro , Magnésio/química , Conformação de Ácido Nucleico , RNA/química , RNA/isolamento & purificação , Transcrição Gênica
12.
Proc Natl Acad Sci U S A ; 108(18): 7357-62, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21471452

RESUMO

Prohead RNA (pRNA) is an essential component in the assembly and operation of the powerful bacteriophage 29 DNA packaging motor. The pRNA forms a multimeric ring via intermolecular base-pairing interactions between protomers that serves to guide the assembly of the ring ATPase that drives DNA packaging. Here we report the quaternary structure of this rare multimeric RNA at 3.5 Å resolution, crystallized as tetrameric rings. Strong quaternary interactions and the inherent flexibility helped rationalize how free pRNA is able to adopt multiple oligomerization states in solution. These characteristics also allowed excellent fitting of the crystallographic pRNA protomers into previous prohead/pRNA cryo-EM reconstructions, supporting the presence of a pentameric, but not hexameric, pRNA ring in the context of the DNA packaging motor. The pentameric pRNA ring anchors itself directly to the phage prohead by interacting specifically with the fivefold symmetric capsid structures that surround the head-tail connector portal. From these contacts, five RNA superhelices project from the pRNA ring, where they serve as scaffolds for binding and assembly of the ring ATPase, and possibly mediate communication between motor components. Construction of structure-based designer pRNAs with little sequence similarity to the wild-type pRNA were shown to fully support the packaging of 29 DNA.


Assuntos
Fagos Bacilares/genética , Empacotamento do DNA/genética , Modelos Moleculares , Proteínas Motores Moleculares/genética , Conformação de Ácido Nucleico , RNA Viral/genética , Cristalização , Mutagênese
13.
Carbohydr Polym ; 335: 122063, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616074

RESUMO

The surface properties of cardiovascular biomaterials play a critical role in their biological responses. Although bacterial nanocellulose (BNC) materials have exhibited potential applications in cardiovascular implants, the impact of their surface characteristics on biocompatibility has rarely been studied. This study investigated the mechanism for the biocompatibility induced by the physicochemical properties of both sides of BNC. With greater wettability and smoothness, the upper BNC surface reduced protein adsorption by 25 % compared with the lower surface. This prolonged the plasma re-calcification time by 14 % in venous blood. Further, compared with the lower BNC surface, the upper BNC surface prolonged the activated partial thromboplastin time by 5 % and 4 % in arterial and venous blood, respectively. Moreover, the lower BNC surface with lesser rigidity, higher roughness, and sparser fiber structure promoted cell adhesion. The lower BNC surface enhanced the proliferation rate of L929 and HUVECs cells by 15 % and 13 %, respectively, compared with the upper BNC surface. With lesser stiffness, the lower BNC surface upregulated the expressions of CD31 and eNOS while down-regulating the ICAM-1 expression - This promoted the proliferation of HUVECs. The findings of this study will provide valuable insights into the design of blood contact materials and cardiovascular implants.


Assuntos
Materiais Biocompatíveis , Líquidos Corporais , Humanos , Adsorção , Materiais Biocompatíveis/farmacologia , Calcificação Fisiológica , Células Endoteliais da Veia Umbilical Humana
14.
Biomolecules ; 14(7)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39062457

RESUMO

The Bifidobacterium bifidum SAM-VI riboswitch undergoes dynamic conformational changes that modulate downstream gene expression. Traditional structural methods such as crystallography capture the bound conformation at high resolution, and additional efforts would reveal details from the dynamic transition. Here, we revealed a transcription-dependent conformation model for Bifidobacterium bifidum SAM-VI riboswitch. In this study, we combine small-angle X-ray scattering, chemical probing, and isothermal titration calorimetry to unveil the ligand-binding properties and conformational changes of the Bifidobacterium bifidum SAM-VI riboswitch and its variants. Our results suggest that the SAM-VI riboswitch contains a pre-organized ligand-binding pocket and stabilizes into the bound conformation upon binding to SAM. Whether the P1 stem formed and variations in length critically influence the conformational dynamics of the SAM-VI riboswitch. Our study provides the basis for artificially engineering the riboswitch by manipulating its peripheral sequences without modifying the SAM-binding core.


Assuntos
Bifidobacterium bifidum , Conformação de Ácido Nucleico , Riboswitch , Bifidobacterium bifidum/metabolismo , Bifidobacterium bifidum/genética , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , Espalhamento a Baixo Ângulo , Ligantes , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , Sítios de Ligação
15.
Int J Biol Macromol ; 266(Pt 1): 130646, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460632

RESUMO

The development of bio-based hemodialysis membranes continues to be a challenge. Bacterial nanocellulose (BNC) membranes show potential in hemodialysis but can hardly retain beneficial proteins. Here, chitosan particles/bacterial nanocellulose (CSP/BNC) membranes were designed to efficiently remove uremic toxins and retain beneficial proteins. First, CSPs were synthesized in situ within a BNC membrane by ionic gelation following negative pressure impregnation. Subsequently, these membranes were thoroughly characterized. Compared with the BNC membrane, the pore volume and pore size of the 3 % CSP/BNC membrane decreased by 42.2 % and 32.1 %, respectively. The increased 22.2 times of Young's modulus and 88.9 % of tensile strength in the 3 % CSP/BNC membrane confirmed enhanced mechanical property. The sieving coefficient of bovine serum albumin decreased to 0.05 ± 0.03 in the 3 % CSP/BNC membrane. Moreover, the CSP/BNC membrane exhibited good hemocompatibility and cytocompatibility. The simulated dialysis results showed that the 3 % CSP/BNC membrane exhibited high clearance of urea (16.37 %/cm2) and lysozyme (3.54 %/cm2), while efficiently retaining bovine serum albumin (98.04 %/cm2). This is the first demonstration of the construction of a BNC-based hemodialysis membrane with in situ CSP formation to effectively regulate the pore properties of the membrane, making the CSP/BNC membrane a promising candidate for hemodialysis applications.


Assuntos
Celulose , Quitosana , Membranas Artificiais , Diálise Renal , Quitosana/química , Celulose/química , Soroalbumina Bovina/química , Animais , Humanos , Porosidade , Nanopartículas/química , Bovinos , Ureia/química , Muramidase/química
16.
Chem Commun (Camb) ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291768

RESUMO

One-dimensional core-shell hollow carbon nanofibers (HCNFs) have been synthesized by coaxial electrospinning, deacetylation and carbonization, which exhibit multi-surface properties that enhance electrolyte infiltration and facilitate ion/electron transport. The nitrogen-doped hard carbon outer shell compensates for the low conductivity of amorphous carbon, and the inner core carbon supports the stability of core-shell hollow structures. This unique structure ensures the accessibility of electrons/ions during electrochemical reactions and contributes to the superior rate performance of HCNFs. Ultimately, a high retention rate of 77% of the initial capacity value (0.1 A g-1) was demonstrated at a current density of 2 A g-1. The core-shell hollow structure designed in this work greatly optimizes the sodium transport dynamics.

17.
Front Bioeng Biotechnol ; 11: 1128762, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008037

RESUMO

Injury to the meniscus is a common occurrence in the knee joint and its management remains a significant challenge in the clinic. Appropriate cell source is essential to cell-based tissue regeneration and cell therapy. Herein, three commonly used cell sources, namely, bone marrow mesenchymal stem cell (BMSC), adipose-derived stem cell (ADSC), and articular chondrocyte, were comparatively evaluated to determine their potential for engineered meniscus tissue in the absence of growth factor stimulus. Cells were seeded on electrospun nanofiber yarn scaffolds that share similar aligned fibrous configurations with native meniscus tissue for constructing meniscus tissue in vitro. Our results show that cells proliferated robustly along nanofiber yarns to form organized cell-scaffold constructs, which recapitulate the typical circumferential fiber bundles of native meniscus. Chondrocytes exhibited different proliferative characteristics and formed engineered tissues with distinct biochemical and biomechanical properties compared to BMSC and ADSC. Chondrocytes maintained good chondrogenesis gene expression profiles and produced significantly increased chondrogenic matrix and form mature cartilage-like tissue as revealed by typical cartilage lacunae. In contrast, stem cells underwent predominately fibroblastic differentiation and generated greater collagen, which contributes to improved tensile strengths of cell-scaffold constructs in comparison to the chondrocyte. ADSC showed greater proliferative activity and increased collagen production than BMSC. These findings indicate that chondrocytes are superior to stem cells for constructing chondrogenic tissues while the latter is feasible to form fibroblastic tissue. Combination of chondrocytes and stem cells might be a possible solution to construct fibrocartilage tissue and meniscus repair and regeneration.

18.
Antiviral Res ; 212: 105556, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871919

RESUMO

The coronavirus SARS-CoV-2 has mutated quickly and caused significant global damage. This study characterizes two mRNA vaccines ZSVG-02 (Delta) and ZSVG-02-O (Omicron BA.1), and associating heterologous prime-boost strategy following the prime of a most widely administrated inactivated whole-virus vaccine (BBIBP-CorV). The ZSVG-02-O induces neutralizing antibodies that effectively cross-react with Omicron subvariants. In naïve animals, ZSVG-02 or ZSVG-02-O induce humoral responses skewed to the vaccine's targeting strains, but cellular immune responses cross-react to all variants of concern (VOCs) tested. Following heterologous prime-boost regimes, animals present comparable neutralizing antibody levels and superior protection against Delta and Omicron BA.1variants. Single-boost only generated ancestral and omicron dual-responsive antibodies, probably by "recall" and "reshape" the prime immunity. New Omicron-specific antibody populations, however, appeared only following the second boost with ZSVG-02-O. Overall, our results support a heterologous boost with ZSVG-02-O, providing the best protection against current VOCs in inactivated virus vaccine-primed populations.


Assuntos
COVID-19 , Animais , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2/genética , Anticorpos Neutralizantes , Vacinas de mRNA , Anticorpos Antivirais , Vacinas de Produtos Inativados
19.
Polymers (Basel) ; 14(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35683971

RESUMO

Regenerated lignocellulose nanofibrils (RLCNFs) have recently piqued the interest of researchers due to their widespread availability and ease of extraction. After dewaxing, we treated sisal fiber with alkali, followed by heating and agitation, to obtain RLCNFs, which were then vacuum oven-dried. We used a variety of characterization techniques, including XRD, SEM, and FT-IR, to assess the effects of the alkali treatment on the sisal fiber. Various characterizations demonstrate that lignocellulose fibrils have been successfully regenerated and contaminants have been removed. In addition, employing the RLCNFs as a stabilizer, stable Pickering emulsions were created. The effects of RLCNF concentration in the aqueous phase and water-to-oil volume ratio on stability were studied. The RLCNFs that have been produced show promise as a stabilizer in Pickering emulsions.

20.
ChemistryOpen ; 11(8): e202200047, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35997083

RESUMO

Porphyrin-based non-fullerene acceptors (NFAs) have shown pronounced potential for assembling low-bandgap materials with near-infrared (NIR) characteristics. Herein, panchromatic-type porphyrin-based molecules (POR1-POR5) are proposed by modulating end-capped acceptors of a highly efficient porphyrin-based NFA PORTFIC(POR) for organic solar cells (OSCs). Quantum chemical structure-property relationship has been studied to discover photovoltaic and optoelectronic characteristics of POR1-POR5. Results show that optoelectronic properties of the POR1-POR5 are better in all aspects when compared with the reference POR. All proposed NFAs particularly POR5 proved to be the preferable porphyrin-based NIR sensitive NFA for OSCs applications owing to lower energy gap (1.56 eV), transition energy (1.11 eV), binding energy (Eb =0.986 eV), electron mobility (λe =0.007013Eh ), hole mobility (λh =0.004686 Eh ), high λmax =1116.27 nm and open-circuit voltage (Voc =1.96 V) values in contrast to the reference POR and other proposed NFAs. This quantum chemical insight provides sufficient evidence about excellent potential of the proposed porphyrin-based NIR sensitive NFA derivatives for their use in OSCs.


Assuntos
Porfirinas , Elétrons , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA