RESUMO
The effect of aqueous solution chemistry on the ionic hydration structure and its corresponding nanofiltration (NF) selectivity is a research gap concerning ion-selective transport. In this study, the hydration distribution of two typical monovalent anions (Cl- and NO3-) under different aqueous solution chemical conditions and the corresponding transmembrane selectivity during NF were investigated by using in situ liquid time-of-flight secondary ion mass spectrometry in combination with molecular dynamics simulations. We demonstrate the inextricable link between the ion hydration structure and the pore steric effect and further find that ionic transmembrane transport can be regulated by breaking the balance between the hydrogen bond network (i.e., water-water) and ion hydration (i.e., ion-water) interactions of hydrated ion. For strongly hydrated (H2O)nCl- with more intense ion-water interactions, a higher salt concentration and coexisting ion competition led to a larger hydrated size and, thus, a higher ion rejection by the NF membrane, whereas weakly hydrated (H2O)nNO3- takes the reverse under the same conditions. Stronger OH--anion hydration competition resulted in a smaller hydrated size of (H2O)nCl- and (H2O)nNO3-, showing a lower observed average hydration number at pH 10.5. This study deepens the long-overlooked understanding of NF separation mechanisms, concerning the hydration structure.
Assuntos
Filtração , Água/química , Íons , Simulação de Dinâmica Molecular , Soluções , Ânions/químicaRESUMO
The transport of hydrated ions across nanochannels is central to biological systems and membrane-based applications, yet little is known about their hydrated structure during transport due to the absence of in situ characterization techniques. Herein, we report experimentally resolved ion dehydration during transmembrane transport using modified in situ liquid ToF-SIMS in combination with MD simulations for a mechanistic reasoning. Notably, complete dehydration was not necessary for transport to occur across membranes with sub-nanometer pores. Partial shedding of water molecules from ion solvation shells, observed as a decrease in the average hydration number, allowed the alkali-metal ions studied here (lithium, sodium, and potassium) to permeate membranes with pores smaller than their solvated size. We find that ions generally cannot hold more than two water molecules during this sterically limited transport. In nanopores larger than the size of the solvation shell, we show that ionic mobility governs the ion hydration number distribution. Viscous effects, such as interactions with carboxyl groups inside the membrane, preferentially hinder the transport of the mono- and dihydrates. Our novel technique for studying ion solvation in situ represents a significant technological leap for the nanofluidics field and may enable important advances in ion separation, biosensing, and battery applications.
Assuntos
Transporte de Íons , Lítio/química , Potássio/química , Sódio/química , Água/química , Dispositivos Lab-On-A-Chip , Membranas Artificiais , Microfluídica/instrumentação , Nylons/química , ViscosidadeRESUMO
Low-maintenance membrane cleaning is essential for the stable operation of membrane bioreactors. This work proposes an in-situ electrical-cleaning method using an electro-MBR. When the applied bias was transiently increased, the membrane flux recovered rapidly because of the scouring effect from gas evolution reactions. The exfoliation of the cake layer induced by gas scouring played a major role in mitigating membrane fouling, recovering the transmembrane pressure (TMP) by 88.6 % under optimal conditions. Membrane modules did not require replacement during the operation period due to the efficacy of electrical cleaning, with the TMP varying between 37.5 % and 62.5 % of the ultimate pressure requiring change of the membrane modules. Despite the increase in power consumption of 0.66 Wh·m-3 due to the additional applied bias, there was no need for chemical additives or manual maintenance. Therefore, the electrical cleaning method enhanced the service life and reduced the maintenance costs of the electro-MBR.
Assuntos
Reatores Biológicos , Eletrodos , Membranas Artificiais , Gases , Incrustação Biológica/prevenção & controle , PressãoRESUMO
The creation of large amounts of excess sludge and residual nitrogen are critical issues in wastewater biotreatment. This study introduced Fe(II) into an oligotrophic anaerobic reactor (OARFe) that was implemented to modify an anoxic-oxic process to motivate in-situ sludge reduction and enhance denitrification under an effective electron shuttle among organic matter, nitrogen, and Fe. The addition of 15 mg L-1 Fe(II) resulted in a sludge reduction efficiency reached 32.0% with a decreased effluent nitrate concentration of 33.3%. This was mostly attributed to the electron transfer from Fe(II) to organic matters and nitrogen species in OARFe. The participation of Fe(II) led to the upregulation of Geothrix and Terrimonas, which caused active organic matter hydrolysis and cell lysis to stimulate the release of extracellular polymeric substances (EPS) and substance transfer between each layer of EPS. The higher utilization of released bioavailable dissolved organic matter improved endogenous denitrification, which can be combined with iron autotrophic denitrification to realize multiple electron donor-based nitrogen removal pathways, resulting in an increased nitrate removal rate of 58.2% in the absence of external carbon sources. These functional bacteria associated with the transformation of nitrogen and carbon and cycling between ferrous and ferric ions were enriched in OARFe, which contributed to efficient electron transport occurred both inside and outside the cell and increased 2,3,5-triphenyltetrazolium chloride electronic transport system activity by 46.9%. This contributed to the potential operational costs of chemical addition and sludge disposal of Fe-AO being 1.9 times lower than those of conventional A2O processes. These results imply that the addition of ferrous ions to an oligotrophic anaerobic zone for wastewater treatment has the potential for low-cost pollution control.
RESUMO
Regulating ion transport behavior through pore size variation is greatly attractive for membrane to meet the need for precise separation, but fabricating nanofiltration (NF) membranes with tunable pore size remains a huge challenge. Herein, a NF membrane with electrically tunable pores was fabricated by intercalating polypyrrole into reduced graphene oxide interlayers. As the potential switches from reduction to oxidation, the membrane pore size shrinks by 11%, resulting in a 16.2% increase in salt rejection. The membrane pore size expands/contracts at redox potentials due to the polypyrrole volume swelling/shrinking caused by the insertion/desertion of cations, respectively. In terms of the inserted cation, Na+ and K+ induce larger pore-size stretching range for the membrane than Ca2+ due to greater binding energy and larger doping amount. Such an electrical response characteristic remained stable after multiple cycles and enabled application in ion selective separation; e.g., the Na+/Mg2+ separation factor in the reduced state is increased by 41% compared to that in the oxide state. This work provides electrically tunable nanochannels for high-precision separation applications such as valuable substance purification and resource recovery from wastewater.
Assuntos
Polímeros , Pirróis , Permeabilidade , Óxidos , Cloreto de Sódio , SódioRESUMO
Dehydration is a basic phenomenon in ion transport through confined nanochannels, but how it affects ion trans-membrane selectivity has not been understood due to a lack of characterization techniques and suitable pore structures. Herein, hydration number distributions of typical alkali metal ions were characterized by combining uniform subnanochannels of ZIF-8-based membranes with the in situ liquid time-of-flight secondary ion mass spectrometry (ToF-SIMS) technique, revealing that steric hindrance induced ion dehydration through neutral confined ZIF-8 windows. The reduction in size due to partial dehydration increased the intrapore velocity for monovalent cations. The highest entropy value with maximum size changes resulting from dehydration drove fast and efficient selective transport of Li+ over other alkaline metal ions, leading to a Li+/Rb+ selectivity of 5.2. The dehydration at the entrance of membrane pores was shown to account for the majority of overall barriers, being a dominant element for ion transport. High hydration energy (>1500 kJ/mol) hindered the dehydration and transport of typical alkaline earth metal ions, achieving ultrahigh monovalent/bivalent cation selectivity (â¼104). These findings uncover the crucial role of dehydration energy barriers and size-based entropy barriers in ion selectivity of trans-subnanochannel transport, providing guidelines for designing selective membranes with specific pore sizes to promote the dehydration of desired solutes.
RESUMO
State-of-the-art ion-selective membranes with ultrahigh precision are of significance for water desalination and energy conservation, but their development is limited by the lack of understanding of the mechanisms of ion transport at the subnanometer scale. Herein, we investigate transport of three typical anions (F-, Cl-, and Br-) under confinement using in situ liquid time-of-flight secondary ion mass spectrometry in combination with transition-state theory. The operando analysis reveals that dehydration and related ion-pore interactions govern anion-selective transport. For strongly hydrated ions [(H2O)nF- and (H2O)nCl-], dehydration enhances ion effective charge and thus the electrostatic interactions with membrane, observed as an increase in decomposed energy from electrostatics, leading to more hindered transport. Contrarily, weakly hydrated ions [(H2O)nBr-] have greater permeability as they allow an intact hydration structure during transport due to their smaller size and the most right-skewed hydration distribution. Our work demonstrates that precisely regulating ion dehydration to maximize the difference in ion-pore interactions could enable the development of ideal ion-selective membranes.
Assuntos
Desidratação , Água , Humanos , Transporte de Íons , Íons , Ânions/química , Água/químicaRESUMO
The adsorption behavior of Zn2+ in four different biological sludge systems, i.e. activated sludge, denitrification sludge, short-cut nitrification sludge, and anammox granules, was investigated. The results indicated that all sludge samples possessed considerable potential for Zn2+ adsorption. Short-cut nitrification sludge possessed the highest Zn2+ maximum adsorption capacity (qm) of 36.4 mg g SS-1, which was much higher than other sludges applied (12.8-14.7 mg g SS-1). Besides, the adsorption rate for short-cut nitrification sludge was fastest among the four types of sludge after fitting with a pseudo-second-order rate equation. Comparing with the physicochemical properties of the four sludges, the soluble extracellular polymeric substances (EPS), especially soluble polysaccharide (PS), played a prior role in binding metal cations (i.e., Zn). The present study also showed that with less than 30% of Zn2+ trapped by EPS, 61.6-71.9% of Zn2+could be harvested directly by cells, indicating that the protecting capability by EPS was limited. Therefore, it is important to remove metal ions as early as possible if the activated sludge processes encountered high stress of heavy metal. Graphical abstract á .