Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(32): e2301680, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37026654

RESUMO

Rare earth-doped metal oxide nanocrystals have a high potential in display, lighting, and bio-imaging, owing to their excellent emission efficiency, superior chemical, and thermal stability. However, the photoluminescence quantum yields (PLQYs) of rare earth-doped metal oxide nanocrystals have been reported to be much lower than those of the corresponding bulk phosphors, group II-VI, and halide-based perovskite quantum dots because of their poor crystallinity and high-concentration surface defects. Here, an ultrafast and room-temperature strategy for the kilogram-scale synthesis of sub-5 nm Eu3+ -doped CaMoO4 nanocrystals is presented, and this reaction can be finished in 1 min under ambient conditions. The absolute PLQYs for sub-5 nm Eu3+ -doped CaMoO4 nanocrystals can reach over 85%, which are comparable to those of the corresponding bulk phosphors prepared by the high-temperature solid state reaction. Moreover, the as-produced nanocrystals exhibit a superior thermal stability and their emission intensity unexpectedly increases after sintering at 600 °C for 2 h in air. 1.9 kg of Eu3+ -doped CaMoO4 nanocrystals with a PLQY of 85.1% can be obtained in single reaction.

2.
Langmuir ; 39(14): 5107-5114, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36989401

RESUMO

Drop-on-demand inkjet printing is used to deposit indium tin oxide (ITO) transparent and conductive thin films. ITO printable ink is prepared by dissolving indium hydroxide and tin (IV) chloride into ethanol with the assistance of acetic acid/tert-butylamine ionic liquid. Ionic liquid-assisted ITO ink exhibits a complete wetting behavior on the glass substrate and a tunable viscosity, which makes it particularly suitable for the inkjet printing fabrication of ITO thin films. After annealing at 500 °C in forming gas, ITO thin films with a sheet resistance of 99 Ω/□, a resistivity of 2.28 × 10-3 Ω·cm, and a transmittance of 95.2% in the range of 400-1000 nm can be obtained. The effects of annealing temperature on the resistivity, mobility, carrier concentration, transmittance, and optical band gap are investigated systematically. Compared with commercial ITO thin films made by conventional vacuum-based deposition approaches, these printable ITO thin films have a higher material utilization.

3.
Dalton Trans ; 52(15): 4663-4668, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36987882

RESUMO

We developed a room-temperature and ultrafast Eu3+-ion doping approach for the synthesis of highly luminescent Eu-doped CaMoO4 nanoparticles. Firstly, CaMoO4 nanoparticles with a particle size of 3.9 nm are rapidly prepared using a room temperature co-precipitation approach. Subsequently, Eu-doped CaMoO4 nanoparticles with a photoluminescence quantum yield of up to 75% are synthesized by a post-cation exchange reaction at room temperature. This facile and room-temperature synthetic strategy enables us to prepare highly luminescent and extremely small rare earth ion-doped metal oxide nanocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA