Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci Res ; 98(6): 1198-1212, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32291804

RESUMO

Microglial polarization to the anti-inflammatory M2 phenotype is essential in resolving neuroinflammation, making it a promising therapeutic strategy for stroke intervention. The actin cytoskeleton is known to be important for the physiological functions of microglia, including migration and phagocytosis. Profilin 1 (PFN1), an actin-binding protein, is involved in the dynamic transformation and reorganization of actin. However, the role of PFN1 in microglial polarization and ischemia/reperfusion injury is unclear. The role of PFN1 on microglial polarization was examined in vitro in BV2 microglial cells subjected to oxygen-glucose deprivation/reoxygenation (OGDR) and in vivo in male mice after transient middle cerebral artery occlusion (MCAO). Knockdown of PFN1 inhibited M1 microglial polarization and promoted M2 microglia polarization 48 hr after OGDR stimulation in BV2 cells and 7 days after MCAO-induced injury in male mice. RhoA/ROCK pathway was involved in the regulation of PFN1 during microglial polarization. Knockdown of PFN1 also significantly attenuated brain infarcts and edema, improved cerebral blood flow and neurological deficits in MCAO-injured mice. Inhibition of PFN1 effectively protected the brain against ischemia/reperfusion injuries by promoting M2 microglial polarization in vitro and in vivo.


Assuntos
Isquemia Encefálica/metabolismo , Polaridade Celular/fisiologia , Microglia/metabolismo , Profilinas/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Isquemia Encefálica/genética , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Profilinas/genética , Transdução de Sinais/fisiologia , Quinases Associadas a rho/genética , Proteína rhoA de Ligação ao GTP/genética
2.
Proc Natl Acad Sci U S A ; 112(15): 4731-6, 2015 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825741

RESUMO

Heterotrimeric G proteins have been implicated in Toll-like receptor 4 (TLR4) signaling in macrophages and endothelial cells. However, whether guanine nucleotide-binding protein G(i) subunit alpha-1 and alpha-3 (Gαi1/3) are required for LPS responses remains unclear, and if so, the underlying mechanisms need to be studied. In this study, we demonstrated that, in response to LPS, Gαi1/3 form complexes containing the pattern recognition receptor (PRR) CD14 and growth factor receptor binding 2 (Grb2)-associated binding protein (Gab1), which are required for activation of PI3K-Akt signaling. Gαi1/3 deficiency decreased LPS-induced TLR4 endocytosis, which was associated with decreased phosphorylation of IFN regulatory factor 3 (IRF3). Gαi1/3 knockdown in bone marrow-derived macrophage cells (Gαi1/3 KD BMDMs) exhibited an M2-like phenotype with significantly suppressed production of TNF-α, IL-6, IL-12, and NO in response to LPS. The altered polarization coincided with decreased Akt activation. Further, Gαi1/3 deficiency caused LPS tolerance in mice. In vitro studies revealed that, in LPS-tolerant macrophages, Gαi1/3 were down-regulated partially by the proteasome pathway. Collectively, the present findings demonstrated that Gαi1/3 can interact with CD14/Gab1, which modulates macrophage polarization in vitro and in vivo.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Endocitose/efeitos dos fármacos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Humanos , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Receptores de Lipopolissacarídeos/genética , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos da Linhagem 129 , Camundongos Knockout , Microscopia Confocal , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas/genética , Ligação Proteica/efeitos dos fármacos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sobrevida , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Exp Neurol ; 368: 114495, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37495008

RESUMO

Endoplasmic reticulum (ER) stress-induced apoptosis and autophagy flux blockade significantly contribute to neuronal pathology of spinal cord injury (SCI). Yet, the molecular interplay between these two distinctive pathways in mediating the pathology of SCI remains largely unexplored. Currently, we aimed at exploring the crucial role of Stub1 in maintaining ER homeostasis and regulating autophagic flux after SCI. Our results demonstrate that Stub1 reduces ER stress induced neuronal apoptosis, promotes axonal regeneration, inhibits glial scar formation and fosters functional recovery by restoring autophagic flux following SCI. Stub1 enhances autophagic flux following SCI by alleviating the permeabilization of lysosomal membrane through activating TFEB. Importantly, we showed that Stub1 promotes the activation of TFEB by targeting HDAC2 for ubiquitination and degradation. Furthermore, the neuroprotective effect of Stub1 on SCI was abrogated by chloroquine administration, underscoring the essential role of Stub1-mediated enhancement of autophagic flux in its protective effects against SCI. Collectively, our data highlights the vital role of Stub1 in regulating ER stress and autophagy flux after SCI, and propose its potential as a promising target for neuroprotective interventions in SCI.


Assuntos
Apoptose , Traumatismos da Medula Espinal , Ratos , Animais , Humanos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia , Autofagia , Estresse do Retículo Endoplasmático/fisiologia , Medula Espinal/patologia
4.
J Cancer ; 13(9): 2727-2728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812187

RESUMO

[This corrects the article DOI: 10.7150/jca.37147.].

5.
J Cancer ; 11(9): 2390-2400, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32201510

RESUMO

Background: Our previous study demonstrated that the peroxiredoxin 6 (PRDX6) protein was downregulated in squamous cervical cancer samples after neoadjuvant chemotherapy compared with the expression level before chemotherapy. However, the effect of PRDX6 on the biological behavior of cervical cancer is still uncertain. Thus, the purpose of this study was to explore the functional impacts of PRDX6 gene on the biological behavior of cervical squamous cancer cells. Methods: An immunofluorescence assay was applied to evaluate the expression difference of PRDX6 between cervical cancer tissue and normal cervical tissue samples. A lentivirus was used to upregulate and downregulate PRDX6 expression in SiHa cells. Furthermore, the role of PRDX6 on cell proliferation, apoptosis, migration and invasion was evaluated. Additionally, the effect of PRDX6 on the progression of the cervical cancer was investigated via a xenograft model in BALB/c nude mice that either overexpressed or underexpressed PRDX6. Results: The expression of PRDX6 was generally increased in cervical cancer tissues. Furthermore, the overexpression of PRDX6 stimulated the proliferation, migration and invasion of cervical squamous cancer cells, and suppressed cell apoptosis. The opposite results were also obtained after successful knockdown of PRDX6. In addition, the overexpression of PRDX6 significantly promoted the growth of cervical carcinoma in vivo. Conclusions: PRDX6 promoted the proliferation, migration and invasion, and inhibited apoptosis in cervical cancer cells, indicating that PRDX6 is an important promoter of cervical cancer tumorigenicity.

6.
J Cancer ; 11(5): 1170-1181, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31956363

RESUMO

Objective: To investigate the effect of peroxiredoxin 1 (PRDX1) on the biological behavior of cervical cancer cells and the possible mechanism. Materials and methods: The expression of PRDX1 in human cervical cancer tissues and adjacent non-tumor tissues were detected by immunohistochemistry (IHC). Lentivirus containing PRDX1-cDNA or shRNA against PRDX1 was constructed to overexpress or knockdown PRDX1 in SiHa cervical cancer cells. Cell proliferation was tested by CCK-8 and BrdU incorporation assay and cell apoptosis was evaluated by AnnexinV-PE /7AAD assay. Scratch wound and transwell invasion assay were used to test migration and invasion activity after PRDX1 was overexpressed or suppressed. Furthermore, the effect of PRDX1 on cell proliferation and apoptosis was also studied using a xenograft model of nude mice. Results: The expression of PRDX1 protein was significantly up-regulated in the tumor tissues compared with the paired adjacent non-tumor tissues. Meanwhile, PRDX1 overexpression was associated with tumor stage, lymphatic metastasis and differentiation. Overexpression of PRDX1 significantly promoted proliferation and inhibited apoptosis by increasing the expression of Nanog, proliferating cell nuclear antigen (PCNA), B-cell lymphoma-2 (Bcl-2) and downregulating the expression of Bcl2-associated X protein (BAX) in SiHa cervical cancer cells. Moreover, PRDX1 overexpression increased invasion and migration of SiHa cervical cancer cells via up-regulating the expression of Snail and matrix metalloprotein 9 (MMP-9) and down-regulating the expression of E-cadherin. Knockdown of PRDX1 resulted in the opposite results. The role of PRDX1 in promoting SiHa cervical cancer cell proliferation and inhibiting apoptosis has also been confirmed in vivo in a mouse xenograft model. Conclusions: PRDX1 promoted cell proliferation, migration, and invasion and suppressed apoptosis of cervical cancer possibly via regulating the expression of related protein.

7.
Cancer Manag Res ; 11: 5925-5938, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308737

RESUMO

OBJECTIVE: To investigate dynein light chain Tctex-type 3 (DYNLT3) protein expression in ovarian epithelial lesions and explore the effects and related mechanisms of DYNLT3 in terms of the biological behavior of ovarian cancer. MATERIALS AND METHODS: Initially, expression of the DYNLT3 protein in ovarian epithelial lesions was detected by immunohistochemical staining, and the prognostic value of DYNLT3 mRNA expression in ovarian cancer patients was assessed using the Kaplan-Meier plotter database. Then, the mRNA and protein expression of DYNLT3 in IOSE80 normal ovarian epithelial cells and SKOV3 ovarian cancer cells was evaluated by quantitative real-time polymerase chain reaction and Western blotting respectively, and the proliferation, apoptosis, migration and invasion of SKOV3 cells after DYNLT3 over-expression and under-expression were investigated by CCK-8 assays and immunofluorescence staining, flow cytometry, wound healing assays and Transwell invasion assays, respectively. Furthermore, the expression of the proliferation-related proteins PCNA and Ki-67 and the invasion- and migration-related proteins Ezrin, Fascin, MMP2 and MMP9 in cells was examined by Western blotting. RESULTS: The protein expression of DYNLT3 gradually increased during the progression of ovarian epithelial lesions, and was related to the development of ovarian cancer. High expression of DYNLT3 mRNA was related to poor overall survival and progression free survival, especially in serous ovarian cancer patients. In addition, overexpression of DYNLT3 promoted SKOV3 cell proliferation, invasion and migration. The corresponding results were also verified by a DYNLT3 knockdown assay. Moreover, DYNLT3 increased cell proliferation, which was related to Ki-67 expression. Besides, DYNLT3 enhanced cell invasion and migration through regulating Ezrin, but not Fascin, MMP2 or MMP9. CONCLUSION: DYNLT3 exerts pro-tumoral effects on ovarian cancer through promoting cell proliferation, migration and invasion, possibly via regulating the protein expression of Ki-67 and Ezrin. DYNLT3 may be a potential prognostic predictor in ovarian cancer.

8.
Cancer Manag Res ; 10: 3753-3764, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288106

RESUMO

OBJECTIVE: Our previous research has shown that the expression of S100 calcium-binding protein A9 (S100A9) in tumor cells was associated with neoadjuvant chemotherapy sensitivity in cervical squamous cell carcinoma. In the present study, we altered the expression of S100A9 through infecting lentivirus, investigated its effect on the chemosensitivity to cisplatin of cervical cancer cells and then made a primary exploration of the involved mechanism. MATERIALS AND METHODS: Lentivirus was employed to upregulate and downregulate S100A9 expression in SiHa cells. The protein expression level of apoptotic-related proteins Bcl-2 and Bax, drug resistance-related proteins multiple drug resistance protein 1 (MRP1), P glycoprotein (P-gp), glutathione-S-transferase-π (GST-π), lung resistance-related protein (LRP), and FOXO1 signaling pathway related proteins was detected by Western blot. The CCK-8 assay was used to examine chemosensitivity to cisplatin, and the proportion of apoptosis cells was analyzed by the flow cytometry. RESULTS: S100A9 overexpression could obviously increase the IC50 value of SiHa cells to cisplatin and decrease the apoptosis rate induced by cisplatin. Downregulation of S100A9 led to the opposite results. In S100A9 overexpression SiHa cells, the expression level of Bcl-2, LRP, GST-π, p-AKT, p-ERK, p-FOXO1, and Nanog was significantly increased, while FOXO1 expression was decreased. The opposite results were observed in S100A9 knockdown SiHa cells. CONCLUSION: Downregulation of S100A9 could significantly increase apoptosis rate, resulting in enhancing sensitivity of SiHa cells to cisplatin, which may be related to Bcl-2, GST-π, and LRP protein and by altering the AKT/ERK-FOXO1-Nanog signaling pathway.

9.
Immunol Res ; 62(2): 137-45, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25846584

RESUMO

In this study, we found that pretreatment with low dose of lipopolysaccharide (LPS), also known as lipoglycans and endotoxin, obviously attenuated liver injury caused by diethylnitrosamine (DEN) in mice. This protective effect was described by decreased ALT, TNF-α, and IL-1ß and increased TGF-ß production. However, Toll-like receptor 4-deficient (TLR4(-/-)) or macrophages depletion abolished this protection in mice, which revealed Kupffer cells (KCs) and TLR4 to be crucial for the prevention of LPS against DEN-induced damage. Further study revealed that LPS pretreatment induced the KCs to M2 polarization and impaired the signaling of MAPKs and NF-κB that mediated the production of inflammatory cytokines. Moreover, T regulatory cells (Tregs) were also recruited to the liver, which may mediate immunosuppression and participate in the prevention of DEN-induced injury. Our results suggested that LPS protected against DEN-induced hepatitis via induction of M2 Kupffer cells and recruitment of Tregs, which contributes to liver tolerance in TLR4-dependent mechanism.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Lipopolissacarídeos/imunologia , Receptor 4 Toll-Like/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Dietilnitrosamina/efeitos adversos , Modelos Animais de Doenças , Células de Kupffer/efeitos dos fármacos , Lipopolissacarídeos/administração & dosagem , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Sistema de Sinalização das MAP Quinases , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , NF-kappa B/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA