Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Gene Med ; 25(10): e3517, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37114595

RESUMO

BACKGROUND: The glioma is the most malignant human brain tumor. Early glioma detection and treatment are still difficult. New biomarkers are desperately required to aid in the evaluation of diagnosis and prognosis. METHODS: The single cell sequencing dataset scRNA-6148 for glioblastoma was obtained from the Chinese Glioma Genome Atlas database. Data were gathered for the transcriptome sequencing project. Genes involved in liquid-liquid phase separation (LLPS) were taken out of the DrLLPS database. To find the modules connected to LLPS, the weighted co-expression network was analyzed. Differential expression analysis was used to identify the differentially expressed genes (DEGs) in gliomas. Pseudo-time series analysis, gene set enrichment analysis (GSEA) and immune cell infiltration analysis were used to investigate the role of important genes in the immunological microenvironment. We examined the function of key glioma genes using polymerase chain reaction (PCR) testing, CCK-8 assays, clone generation assays, transwell assays and wound healing assays. RESULTS: FABP5 was identified as a key gene in glioblastoma by multiomics research. Pseudo-time series analysis showed that FABP5 was highly linked with the differentiation of many different types of cells. GSEA revealed that FABP5 was strongly linked to several hallmark pathways in glioblastoma. We looked at immune cell infiltration and discovered a significant link between FABP5, macrophages and T cell follicular helpers. The PCR experiment results demonstrated that FABP5 expression was elevated in glioma samples. Cell experiments showed that FABP5 knockdown dramatically decreased the viability, proliferation, invasion and migration of the LN229 and U87 glioma cell lines. CONCLUSIONS: Our study provides a new biomarker, FABP5, for glioma diagnosis and treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Proteínas de Ligação a Ácido Graxo/genética , Glioblastoma/genética , Glioma/diagnóstico , Glioma/genética , Prognóstico , Microambiente Tumoral/genética
2.
Mol Ther ; 30(7): 2568-2583, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35351656

RESUMO

Proneural (PN) to mesenchymal (MES) transition (PMT) is a crucial phenotypic shift in glioblastoma stem cells (GSCs). However, the mechanisms driving this process remain poorly understood. Here, we report that Fos-like antigen 1 (FOSL1), a component of AP1 transcription factor complexes, is a key player in regulating PMT. FOSL1 is predominantly expressed in the MES subtype, but not PN subtype, of GSCs. Knocking down FOSL1 expression in MES GSCs leads to the loss of MES features and tumor-initiating ability, whereas ectopic expression of FOSL1 in PN GSCs is able to induce PMT and maintain MES features. Moreover, FOSL1 facilitates ionizing radiation (IR)-induced PMT and radioresistance of PN GSCs. Inhibition of FOSL1 enhances the anti-tumor effects of IR by preventing IR-induced PMT. Mechanistically, we find that FOSL1 promotes UBC9-dependent CYLD SUMOylation, thereby inducing K63-linked polyubiquitination of major nuclear factor κB (NF-κB) intermediaries and subsequent NF-κB activation, which results in PMT induction in GSCs. Our study underscores the importance of FOSL1 in the regulation of PMT and suggests that therapeutic targeting of FOSL1 holds promise to attenuate molecular subtype switching in patients with glioblastomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Mesenquimais , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Enzima Desubiquitinante CYLD/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Radiação Ionizante , Enzimas de Conjugação de Ubiquitina/metabolismo
3.
Mol Cancer ; 21(1): 57, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189910

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) system provides adaptive immunity against plasmids and phages in prokaryotes. This system inspires the development of a powerful genome engineering tool, the CRISPR/CRISPR-associated nuclease 9 (CRISPR/Cas9) genome editing system. Due to its high efficiency and precision, the CRISPR/Cas9 technique has been employed to explore the functions of cancer-related genes, establish tumor-bearing animal models and probe drug targets, vastly increasing our understanding of cancer genomics. Here, we review current status of CRISPR/Cas9 gene editing technology in oncological research. We first explain the basic principles of CRISPR/Cas9 gene editing and introduce several new CRISPR-based gene editing modes. We next detail the rapid progress of CRISPR screening in revealing tumorigenesis, metastasis, and drug resistance mechanisms. In addition, we introduce CRISPR/Cas9 system delivery vectors and finally demonstrate the potential of CRISPR/Cas9 engineering to enhance the effect of adoptive T cell therapy (ACT) and reduce adverse reactions.


Assuntos
Edição de Genes , Neoplasias , Animais , Sistemas CRISPR-Cas , Edição de Genes/métodos , Genômica , Humanos , Neoplasias/genética , Neoplasias/terapia , Oncogenes
4.
Mol Cancer ; 19(1): 92, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430013

RESUMO

BACKGROUND: Amplification of chromosome 7q21-7q31 is associated with tumor recurrence and multidrug resistance, and several genes in this region are powerful drivers of hepatocellular carcinoma (HCC). We aimed to investigate the key circular RNAs (circRNAs) in this region that regulate the initiation and development of HCC. METHODS: We used qRT-PCR to assess the expression of 43 putative circRNAs in this chromosomal region in human HCC and matched nontumor tissues. In addition, we used cultured HCC cells to modify circRNA expression and assessed the effects in several cell-based assays as well as gene expression analyses via RNA-seq. Modified cells were implanted into immunocompetent mice to assess the effects on tumor development. We performed additional experiments to determine the mechanism of action of these effects. RESULTS: circMET (hsa_circ_0082002) was overexpressed in HCC tumors, and circMET expression was associated with survival and recurrence in HCC patients. By modifying the expression of circMET in HCC cells in vitro, we found that circMET overexpression promoted HCC development by inducing an epithelial to mesenchymal transition and enhancing the immunosuppressive tumor microenvironment. Mechanistically, circMET induced this microenvironment through the miR-30-5p/Snail/ dipeptidyl peptidase 4(DPP4)/CXCL10 axis. In addition, the combination of the DPP4 inhibitor sitagliptin and anti-PD1 antibody improved antitumor immunity in immunocompetent mice. Clinically, HCC tissues from diabetic patients receiving sitagliptin showed higher CD8+ T cell infiltration than those from HCC patients with diabetes without sitagliptin treatment. CONCLUSIONS: circMET is an onco-circRNA that induces HCC development and immune tolerance via the Snail/DPP4/CXCL10 axis. Furthermore, sitagliptin may enhance the efficacy of anti-PD1 therapy in a subgroup of patients with HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Dipeptidil Peptidase 4/metabolismo , Resistencia a Medicamentos Antineoplásicos , MicroRNAs/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , RNA Circular/genética , Fatores de Transcrição da Família Snail/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Movimento Celular , Proliferação de Células , Dipeptidil Peptidase 4/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Fatores de Transcrição da Família Snail/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Cancer ; 19(1): 110, 2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32593303

RESUMO

OBJECTIVE: Natural killer (NK) cells play a critical role in the innate antitumor immune response. Recently, NK cell dysfunction has been verified in various malignant tumors, including hepatocellular carcinoma (HCC). However, the molecular biological mechanisms of NK cell dysfunction in human HCC are still obscure. METHODS: The expression of circular ubiquitin-like with PHD and ring finger domain 1 RNA (circUHRF1) in HCC tissues, exosomes, and cell lines was detected by qRT-PCR. Exosomes were isolated from the culture medium of HCC cells and plasma of HCC patients using an ultracentrifugation method and the ExoQuick Exosome Precipitation Solution kit and then characterized by transmission electronic microscopy, NanoSight and western blotting. The role of circUHRF1 in NK cell dysfunction was assessed by ELISA. In vivo circRNA precipitation, RNA immunoprecipitation, and luciferase reporter assays were performed to explore the molecular mechanisms of circUHRF1 in NK cells. In a retrospective study, the clinical characteristics and prognostic significance of circUHRF1 were determined in HCC tissues. RESULTS: Here, we report that the expression of circUHRF1 is higher in human HCC tissues than in matched adjacent nontumor tissues. Increased levels of circUHRF1 indicate poor clinical prognosis and NK cell dysfunction in patients with HCC. In HCC patient plasma, circUHRF1 is predominantly secreted by HCC cells in an exosomal manner, and circUHRF1 inhibits NK cell-derived IFN-γ and TNF-α secretion. A high level of plasma exosomal circUHRF1 is associated with a decreased NK cell proportion and decreased NK cell tumor infiltration. Moreover, circUHRF1 inhibits NK cell function by upregulating the expression of TIM-3 via degradation of miR-449c-5p. Finally, we show that circUHRF1 may drive resistance to anti-PD1 immunotherapy in HCC patients. CONCLUSIONS: Exosomal circUHRF1 is predominantly secreted by HCC cells and contributes to immunosuppression by inducing NK cell dysfunction in HCC. CircUHRF1 may drive resistance to anti-PD1 immunotherapy, providing a potential therapeutic strategy for patients with HCC.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Carcinoma Hepatocelular/patologia , Resistencia a Medicamentos Antineoplásicos , Exossomos/genética , Células Matadoras Naturais/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , RNA Circular/genética , Ubiquitina-Proteína Ligases/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Cell Physiol ; 234(7): 12051-12060, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30537113

RESUMO

Hepatocellular carcinoma (HCC) is one of the most fatal cancers with common features of invasion and metastasis. Recent evidence indicate that the long noncoding RNA NORAD is a potential oncogene and is significantly upregulated in several cancers. However, the general biological role and clinical value of NORAD in HCC remains unknown. Here, NORAD expression was measured in 29 paired tumor and paratumor tissues via quantitative real-time polymerase chain reaction (qPCR). The effects of NORAD on HCC cell malignant potential were investigated via NORAD overexpression and knockdown both in vitro and in vivo. The mechanism of competitive endogenous RNAs (ceRNAs) was acquired and identified by bioinformatics analyses and luciferase assays. Moreover, the impact of NORAD level on the transforming growth factor ß (TGF-ß) pathway was further determined by qPCR. We found that HCC tissues had a high level of NORAD compared with the paratumor tissues, and NORAD upregulation was associated with the shorter overall survival of patients with HCC. Furthermore, NORAD overexpression was demonstrated to promote HCC cell migration and invasion. Mechanically, NORAD might function as a ceRNA to regulate miR-202-5p, which served as a tumor-suppressing microRNA via the TGF-ß pathway. We address that NORAD has a tumor-promoting effect in HCC and describes a novel mechanism whereby NORAD regulates the TGF-ß pathway as a ceRNA of Homo sapiens (hsa)-miR-202-5p.


Assuntos
Carcinoma Hepatocelular/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Adulto , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Fator de Crescimento Transformador beta/metabolismo
8.
Mol Cancer ; 18(1): 105, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31153371

RESUMO

BACKGROUND: Recently, the dysregulation of circular RNA (circRNA) have been shown to have important regulatory roles in cancer development and progression, including hepatocellular carcinoma (HCC). However, the roles of most circRNAs in HCC are still unknown. METHODS: The expression of circular tripartite motif containing 33-12 (circTRIM33-12) in HCC tissues and cell lines was detected by qRT-PCR. The role of circTRIM33-12 in HCC progression was assessed by western blotting, CCK-8, flow cytometry, transwell and a subcutaneous tumor mouse assays both in vitro and in vivo. In vivo circRNA precipitation, RNA immunoprecipitation, luciferase reporter assays were performed to evaluate the interaction between circTRIM33-12 and miR-191. RESULTS: Here, we found that circTRIM33-12, is downregulated in HCC tissues and cell lines. The downregulation of circTRIM33-12 in HCC was significantly correlated with malignant characteristics and served as an independent risk factor for the overall survival (OS) and recurrence-free survival (RFS) of patients with HCC after surgery. The reduced expression of circTRIM33-12 in HCC cells increases tumor proliferation, migration, invasion and immune evasion. Mechanistically, we demonstrated that circTRIM33-12 upregulated TET1 expression by sponging miR-191, resulting in significantly reduced 5-hydroxymethylcytosine (5hmC) levels in HCC cells. CONCLUSIONS: These results reveal the important role of circTRIM33-12 in the proliferation, migration, invasion and immune evasion abilities of HCC cells and provide a new perspective on circRNAs in HCC progression.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , RNA Circular/genética , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Masculino , Invasividade Neoplásica , Transplante de Neoplasias , Prognóstico , Análise de Sobrevida
9.
Cancer Sci ; 110(7): 2133-2144, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31066149

RESUMO

Lymphoid-specific helicase (LSH) is overexpressed in tumor tissues and its overexpression is associated with poor prognosis in several cancers. However, the role and molecular mechanism of LSH in hepatocellular carcinoma (HCC) remains largely unknown. Herein, we report that LSH was overexpressed in tumor tissues of HCC, and overexpression of LSH was associated with poor prognosis from a public HCC database, and validated by clinical samples from our department. Ectopic LSH expression promoted the growth of HCC cells in vivo and in vitro. Mechanistically, LSH overexpression promoted tumor growth by activating transcription of centromere protein F (CENPF). Clinically, overexpression of LSH and/or CENPF correlated with shorter overall survival and higher cumulative recurrence rates of HCC. In conclusion, LSH promotes tumor growth of HCC through transcriptional regulation of CENPF expression. Therefore, LSH may be a novel predictor for prognosis and a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Proteínas Cromossômicas não Histona/genética , DNA Helicases/metabolismo , Neoplasias Hepáticas/patologia , Proteínas dos Microfilamentos/genética , Regulação para Cima , Idoso , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Transplante de Neoplasias , Prognóstico , Análise de Sequência de RNA , Análise de Sobrevida , Análise Serial de Tecidos , Ativação Transcricional
10.
Cancer Cell Int ; 19: 265, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632199

RESUMO

BACKGROUND: Tumor-infiltrating immune cells (TIICs) are highly relevant to clinical outcome of glioma. However, previous studies cannot account for the diverse functions that make up the immune response in malignant transformation (MT) from low-grade glioma (LGG) to high-grade glioma (HGG). METHODS: Transcriptome level, genomic profiles and its relationship with clinical practice were obtained from TCGA and CGGA database. The "Cell type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT)" algorithm was used to estimate the fraction of 22 immune cell types. We divided the TCGA and CGGA set into an experiment set (n = 174) and a validation set (n = 74) by random number table method. Univariate and multivariate analyses were performed to evaluate the 22 TIICs' value for MT in LGG. ROC curve was plotted to calculate area under curve (AUC) and cut-off value. RESULTS: Heterogeneity between TIICs exists in both intra- and inter-groups. Several TIICs are notably associated with tumor grade, molecular subtypes and survival. T follicular helper (TFH) cells, activated NK Cells and M0 macrophages were screened out to be independent predictors for MT in LGG and formed an immune risk score (IRS) (AUC = 0.732, p < 0.001, 95% CI 0.657-0.808 cut-off value = 0.191). In addition, the IRS model was validated by validation group, Immunohistochemistry (IHC) and functional enrichment analyses. CONCLUSIONS: The proposed IRS model provides promising novel signatures for predicting MT from LGG to HGG and may bring a better design of glioma immunotherapy studies in years to come.

12.
Adv Healthc Mater ; : e2400652, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622782

RESUMO

Cuproptosis, a recently identified non-apoptotic programmed cell death modality, attracts considerable attention in the realm of cancer therapeutics owing to its unique cellular demise mechanisms. Since its initial report in 2022, strategies inducing or amplifying cuproptosis for cancer treatment emerge. The engineering of nano-systems to elicit cuproptosis effectively circumvents constraints associated with conventional small-molecule pharmaceutical interventions, presenting novel prospects for oncological therapy. Stimulus-responsive nanomaterials, leveraging their distinctive spatiotemporal control attributes, are investigated for their role in modulating the induction or augmentation of cuproptosis. In this comprehensive review, the physiological characteristics of cuproptosis, encompassing facets such as copper overload and depletion, coupled with regulatory factors intrinsic to cuproptosis, are expounded upon. Subsequently, design methodologies for stimulus-responsive induction or enhancement of cuproptosis, employing stimuli such as light, ultrasound, X-ray, and the tumor microenvironment, are systematically delineated. This review encompasses intricacies in nanomaterial design, insights into the therapeutic processes, and the associated advantages. Finally, challenges inherent in stimulus-responsive induction/enhancement of cuproptosis are deliberated upon and prospective insights into the future trajectory of copper-mediated cancer therapy are provided.

13.
Psych J ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923405

RESUMO

The current study aimed to investigate the impact of recreational gymnastics on executive function in Chinese preschoolers, with a focus on gymnastics potential to enhance core components of executive function. A total of 63 preschool children who received full-time education were randomly assigned to either an intervention group (N = 31, mean age = 66.27 months, SD = 3.12 months) or a control group (N = 32, mean age = 66.79 months, SD = 3.34 months). The intervention group engaged in recreational gymnastics for 60 min, three times a week for 12 weeks. Meanwhile, the control group continued with their typical outdoor activities at kindergarten and did not participate in any organized sports. The intervention program was primarily conducted through group play and was facilitated by teachers who underwent standardized training. Various simple and complex tasks were utilized to evaluate delay gratification (Snack delay and Wrapped gift), inhibitory control (Stop signal task and Circle drawing task), working memory (Letter memory task and Keep track task), and cognitive flexibility (Go/No-Go task and Dots task). The analysis of covariance revealed that the children who participated in the intervention outperformed the control group on most simple and complex executive function tasks. Specifically, these children demonstrated an enhanced ability to regulate persistent responses, process and update information, and manage high cognitive conflict. The findings of this investigation lend support to the hypothesis that moderate-intensity recreational gymnastics is an efficacious means of enhancing executive function in early childhood. Future research should employ a larger sample size, incorporate a long-term follow-up design, and utilize a multi-method approach to further substantiate the impact of moderate-intensity gymnastics on the executive function of young children, as well as to investigate its underlying mechanism and generalizability.

14.
J Colloid Interface Sci ; 662: 171-182, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341940

RESUMO

The physical property tuning of nanomaterials is of great importance in energy, medicine, environment, catalysis, and other fields. Topochemical synthesis of nanomaterials can achieve precise control of material properties. Here, we synthesized a kind of element-doped bismuth-based nanomaterial (BOS) by topochemical-like synthesis and used it for the phototherapy of tumors. In this study, we employed bismuth fluoride nanoflowers as a template and fabricated element-doped bismuth oxide nanoflowers by reduction conditions. The product is consistent with the precursor in crystal structure and nanomorphology, realizing topochemical-like synthesis under mild conditions. BOS can generate reactive oxygen species, consume glutathione, and perform photothermal conversion under 730 nm light irradiation. In vitro and in vivo studies demonstrate that BOS could suppress tumor growth by inducing apoptosis and ferroptosis through phototherapy. Therefore, this study offers a general regulation method for tuning the physical properties of nanomaterials by using a topochemical-like synthesis strategy.


Assuntos
Neoplasias da Mama , Nanoestruturas , Neoplasias , Fotoquimioterapia , Humanos , Feminino , Neoplasias da Mama/radioterapia , Bismuto/química , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Nanoestruturas/química , Linhagem Celular Tumoral
15.
J Colloid Interface Sci ; 662: 914-927, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382375

RESUMO

Ultrasound and X-rays possess remarkable tissue penetration capabilities, making them promising candidates for cancer therapy. Sonodynamic therapy, which utilizes ultrasound excitation, offers a safer alternative to radiotherapy and can be combined with X-rays to mitigate the adverse effects on normal tissues. In this study, we developed a bismuth-based heterostructure semiconductor (BFIP) to enhance the efficacy of radiotherapy and sonodynamic therapy in treating breast cancer. The semiconductor is fabricated through a two-step process involving the synthesis of porous spherical bismuth fluoride and partially reduced to bismuth oxyiodide. Then, followed by surface modification with amphiphilic polyethylene glycol, BFIP is fabricated. Incorporating heavy atoms in the BFIP enhances radiosensitivity. The BFIP exhibits superior carrier separation efficiency compared to bismuth fluoride, generating a substantial quantity of reactive oxygen species upon ultrasound stimulation. Moreover, the BFIP effectively depletes glutathione through coordination and hole-mediated oxidation pathways, disrupting the tumor microenvironment and inducing oxidative stress. Encouraging results are acquired in both in vitro cell and in vivo tumor models. Our study provides a de-risking strategy by utilizing ultrasound as a partial substitute for X-rays in treating deep-seated tumors, offering a viable research direction for constructing a unified nanoplatform.


Assuntos
Bismuto , Neoplasias , Humanos , Fluoretos , Glutationa , Estresse Oxidativo , Polietilenoglicóis , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio , Microambiente Tumoral
16.
Biofactors ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696072

RESUMO

The deubiquitinating enzyme 26S proteasome non-ATPase regulatory subunit 14 (PSMD14), a member of the JAB1/MPN/Mov34 metalloenzyme (JAMM) family, has been shown to function as an oncogene in various human cancers. However, the function of PSMD14 in glioma and the underlying mechanism remain unclear. In this study, our findings reveal a dramatic upregulation of PSMD14 in GBMs, which is associated with poor survival outcomes. Knocking down PSMD14 is associated with decreased proliferation and invasion of GBM cells in vitro and inhibited tumor growth in a xenograft mouse model. Mechanistically, PSMD14 directly interacts with ß-catenin, leading to a decrease in the K48-linked ubiquitination of ß-catenin and subsequent ß-catenin stabilization. Increased ß-catenin expression significantly reverses the inhibitory effects of PSMD14 knockdown on the migration, invasion, and tumor growth of GBM cells. Moreover, we observed a significant correlation between PSMD14 and ß-catenin expression in human GBM samples. In summary, our results reveal that PSMD14 is a crucial deubiquitinase that is responsible for stabilizing the ß-catenin protein, highlighting its potential for use as a therapeutic target for GBM.

17.
Nat Commun ; 15(1): 621, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245530

RESUMO

Intratumoral immune status influences tumor therapeutic response, but it remains largely unclear how the status determines therapies for patients with intrahepatic cholangiocarcinoma. Here, we examine the single-cell transcriptional and TCR profiles of 18 tumor tissues pre- and post- therapy of gemcitabine plus oxaliplatin, in combination with lenvatinib and anti-PD1 antibody for intrahepatic cholangiocarcinoma. We find that high CD8 GZMB+ and CD8 proliferating proportions and a low Macro CD5L+ proportion predict good response to the therapy. In patients with a poor response, the CD8 GZMB+ and CD8 proliferating proportions are increased, but the CD8 GZMK+ proportion is decreased after the therapy. Transition of CD8 proliferating and CD8 GZMB+ to CD8 GZMK+ facilitates good response to the therapy, while Macro CD5L+-CD8 GZMB+ crosstalk impairs the response by increasing CTLA4 in CD8 GZMB+. Anti-CTLA4 antibody reverses resistance of the therapy in intrahepatic cholangiocarcinoma. Our data provide a resource for predicting response of the combination therapy and highlight the importance of CD8+T-cell status conversion and exhaustion induced by Macro CD5L+ in influencing the response, suggesting future avenues for cancer treatment optimization.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Compostos de Fenilureia , Quinolinas , Humanos , Oxaliplatina/uso terapêutico , Gencitabina , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Linfócitos T CD8-Positivos , Ductos Biliares Intra-Hepáticos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Proteínas Reguladoras de Apoptose , Receptores Depuradores
18.
Orphanet J Rare Dis ; 18(1): 174, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400835

RESUMO

BACKGROUND: At present, the etiology of moyamoya disease is not clear, and it is necessary to explore the mechanism of its occurrence and development. Although some bulk sequencing data have previously revealed transcriptomic changes in Moyamoya disease, single-cell sequencing data has been lacking. METHODS: Two DSA(Digital Subtraction Angiography)-diagnosed patients with moyamoya disease were recruited between January 2021 and December 2021. Their peripheral blood samples were single-cell sequenced. CellRanger(10 x Genomics, version 3.0.1) was used to process the raw data, demultiplex cellular barcodes, map reads to the transcriptome, and dowm-sample reads(as required to generate normalized aggregate data across samples). There were 4 normal control samples, including two normal samples GSM5160432 and GSM5160434 of GSE168732, and two normal samples of GSE155698, namely GSM4710726 and GSM4710727. Weighted co-expression network analysis was used to explore the gene sets associated with moyamoya disease. GO analysis and KEGG analysis were used to explore gene enrichment pathways. Pseudo-time series analysis and cell interaction analysis were used to explore cell differentiation and cell interaction. RESULTS: For the first time, we present a peripheral blood single cell sequencing landscape of Moyamoya disease, revealing cellular heterogeneity and gene expression heterogeneity. In addition, by combining with WGCNA analysis in public database and taking intersection, the key genes in moyamoya disease were obtained. namely PTP4A1, SPINT2, CSTB, PLA2G16, GPX1, HN1, LGALS3BP, IFI6, NDRG1, GOLGA2, LGALS3. Moreover, pseudo-time series analysis and cell interaction analysis revealed the differentiation of immune cells and the relationship between immune cells in Moyamoya disease. CONCLUSIONS: Our study can provide information for the diagnosis and treatment of moyamoya disease.


Assuntos
Doença de Moyamoya , Humanos , Doença de Moyamoya/genética , Doença de Moyamoya/diagnóstico , Perfilação da Expressão Gênica , Angiografia Digital , Transcriptoma , Glicoproteínas de Membrana
19.
Chem Commun (Camb) ; 59(84): 12617-12620, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37791606

RESUMO

A novel radio-photoluminescence material featuring fluorochromic responses toward UV or X-ray irradiation has been obtained. Such a unique monomer- to excimer-based luminescence transition allows for dosimetry of ionizing radiation in a ratiometric manner. Rather than quenching the luminescence, the radiation-induced radical species of Th-105 boost the excimer emission, rendering it as a rare material possessing radical-excimers.

20.
Cell Death Dis ; 14(2): 79, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732324

RESUMO

Multidrug resistance is a major challenge in treating advanced hepatocellular carcinoma (HCC). Although recent studies have reported that the multidrug resistance phenotype is associated with abnormal DNA methylation in cancer cells, the epigenetic mechanism underlying multidrug resistance remains unknown. Here, we reported that the level of 5-hydroxymethylcytosine (5-hmC) in human HCC tissues was significantly lower than that in adjacent liver tissues, and reduced 5-hmC significantly correlated with malignant phenotypes, including poor differentiation and microvascular invasion; additionally, loss of 5-hmC was related to chemotherapy resistance in post-transplantation HCC patients. Further, the 5-hmC level was regulated by ten-eleven translocation 2 (TET2), and the reduction of TET2 in HCC contributes to chemotherapy resistance through histone acetyltransferase P300/CBP-associated factor (PCAF) inhibition and AKT signaling hyperactivation. In conclusion, loss of 5-hmC induces chemotherapy resistance through PCAF/AKT axis and is a promising chemosensitivity prediction biomarker and therapeutic target for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt , 5-Metilcitosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA