Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Plant Cell ; 34(9): 3364-3382, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35703939

RESUMO

Activity of the vascular cambium gives rise to secondary xylem for wood formation in trees. The transcription factor WUSCHEL-related HOMEOBOX4 (WOX4) is a central regulator downstream of the hormone and peptide signaling pathways that maintain cambial activity. However, the genetic regulatory network underlying WOX4-mediated wood formation at the post-transcriptional level remains to be elucidated. In this study, we identified the ubiquitin receptor PagDA1 in hybrid poplar (Populus alba × Populus glandulosa clone 84K) as a negative regulator of wood formation, which restricts cambial activity during secondary growth. Overexpression of PagDA1 in poplar resulted in a relatively reduced xylem due to decreased cambial cell division. By contrast, mutation of PagDA1 by CRISPR/Cas9 resulted in an increased cambial cell activity and promoted xylem formation. Genetic analysis demonstrated that PagDA1 functions antagonistically in a common pathway as PagWOX4 to regulate cambial activity. We propose that PagDA1 physically associates with PagWOX4 and modulates the degradation of PagWOX4 by the 26S proteasome. Moreover, genetic analysis revealed that PagDA1 exerts its negative effect on cambial development by modulating the stability of PagWOX4 in a ubiquitin-dependent manner mediated by the E3 ubiquitin ligase PagDA2. In sum, we have identified a cambial regulatory protein complex, PagDA1-PagWOX4, as a potential target for wood biomass improvement.


Assuntos
Câmbio , Populus , Redes Reguladoras de Genes , Fatores de Transcrição , Ubiquitinas , Madeira , Xilema
2.
New Phytol ; 243(4): 1455-1471, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874377

RESUMO

Wood is resulted from the radial growth paced by the division and differentiation of vascular cambium cells in woody plants, and phytohormones play important roles in cambium activity. Here, we identified that PagJAZ5, a key negative regulator of jasmonate (JA) signaling, plays important roles in enhancing cambium cell division and differentiation by mediating cytokinin signaling in poplar 84K (Populus alba × Populus glandulosa). PagJAZ5 is preferentially expressed in developing phloem and cambium, weakly in developing xylem cells. Overexpression (OE) of PagJAZ5m (insensitive to JA) increased cambium activity and xylem differentiation, while jaz mutants showed opposite results. Transcriptome analyses revealed that cytokinin oxidase/dehydrogenase (CKXs) and type-A response regulators (RRs) were downregulated in PagJAZ5m OE plants. The bioactive cytokinins were significantly increased in PagJAZ5m overexpressing plants and decreased in jaz5 mutants, compared with that in 84K plants. The PagJAZ5 directly interact with PagMYC2a/b and PagWOX4b. Further, we found that the PagRR5 is regulated by PagMYC2a and PagWOX4b and involved in the regulation of xylem development. Our results showed that PagJAZ5 can increase cambium activity and promote xylem differentiation through modulating cytokinin level and type-A RR during wood formation in poplar.


Assuntos
Câmbio , Ciclopentanos , Citocininas , Regulação da Expressão Gênica de Plantas , Oxilipinas , Proteínas de Plantas , Populus , Transdução de Sinais , Xilema , Populus/genética , Populus/crescimento & desenvolvimento , Populus/metabolismo , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Câmbio/metabolismo , Citocininas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xilema/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Diferenciação Celular
3.
Plant Physiol ; 194(1): 243-257, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37399189

RESUMO

Plant lignocellulosic biomass, i.e. secondary cell walls of plants, is a vital alternative source for bioenergy. However, the acetylation of xylan in secondary cell walls impedes the conversion of biomass to biofuels. Previous studies have shown that REDUCED WALL ACETYLATION (RWA) proteins are directly involved in the acetylation of xylan but the regulatory mechanism of RWAs is not fully understood. In this study, we demonstrate that overexpression of a Populus trichocarpa PtRWA-C gene increases the level of xylan acetylation and increases the lignin content and S/G ratio, ultimately yielding poplar woody biomass with reduced saccharification efficiency. Furthermore, through gene coexpression network and expression quantitative trait loci (eQTL) analysis, we found that PtRWA-C was regulated not only by the secondary cell wall hierarchical regulatory network but also by an AP2 family transcription factor HARDY (HRD). Specifically, HRD activates PtRWA-C expression by directly binding to the PtRWA-C promoter, which is also the cis-eQTL for PtRWA-C. Taken together, our findings provide insights into the functional roles of PtRWA-C in xylan acetylation and consequently saccharification and shed light on synthetic biology approaches to manipulate this gene and alter cell wall properties. These findings have substantial implications for genetic engineering of woody species, which could be used as a sustainable source of biofuels, valuable biochemicals, and biomaterials.


Assuntos
Populus , Populus/genética , Populus/metabolismo , Xilanos/metabolismo , Acetilação , Biomassa , Biocombustíveis/análise , Plantas/metabolismo , Parede Celular/metabolismo , Lignina/metabolismo
4.
Plant Cell Environ ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847345

RESUMO

Shoot branching from axillary bud (AB) directly determines plant architecture. However, the mechanism through which AB remains dormant or emerges to form branches as plants grow remains largely unknown. Here, the auxin-strigolactone (IAA-SL) pathway was first shown to regulate shoot branching in poplar, and we found that PagKNAT2/6b could modulate this pathway. PagKNAT2/6b was expressed mainly in the shoot apical meristem and AB and was induced by shoot apex damage. PagKNAT2/6b overexpressing poplar plants (PagKNAT2/6b OE) exhibited multiple branches that mimicked the branching phenotype of nontransgenic plants after decapitation treatment, while compared with nontransgenic controls, PagKNAT2/6b antisense transgenic poplar and Pagknat2/6b mutant lines exhibited a significantly decreased number of branches after shoot apex damage treatment. In addition, we found that PagKNAT2/6b directly inhibits the expression of the key IAA synthesis gene PagYUC6a, which is specifically expressed in the shoot apex. Moreover, overexpression of PagYUC6a in the PagKNAT2/6b OE background reduced the number of branches after shoot apex damage treatment. Overall, we conclude that PagKNAT2/6b responds to shoot apical injury and regulates shoot branching through the IAA-SL pathway. These findings may provide a theoretical basis and candidate genes for genetic engineering to create new forest tree species with different crown types.

5.
Plant Cell Environ ; 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39308044

RESUMO

Plant organs achieve their specific size and shape through the coordination of cell division and cell expansion, processes that are profoundly influenced by environmental cues. Cytokinesis during cell division depends on the position of the cytokinetic wall, but how this process responses to environment fluctuations remains underexplored. Here, we investigated a regulatory module involving C2H2-type zinc finger protein (C2H2-ZFP) in leaf morphology during drought stress. A total of 123 C2H2-ZFP members were identified through a comparative genome survey in Populus alba × P. glandulosa '84K'. Among them, PagSUPa, an orthologous gene of Arabidopsis SUPERMAN, was selected due to its responsiveness to drought stress and was further confirmed to play a role in leaf development. Phenotypic characterization and cellular analysis revealed that PagSUPa fine-tunes the duration of cell proliferation in the adaxial epidermis, thereby influencing leaf morphology by modulating leaf adaxial-abaxial polarity. Additionally, we found that PagSUPa directly suppresses the expression of PHRAGMOPLAST ORIENTING KINESIN1 (PagPOK1) and PagPOK2, genes encoding proteins involved in phragmoplast orientation and position, which results in impaired cytokinesis and cell wall organization. This study provides novel insights into the regulatory network governed by the SUP gene during leaf development, specifically in relation to cell division.

6.
Plant Cell Environ ; 47(4): 1363-1378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38221855

RESUMO

Eucalyptus is a widely planted hardwood tree species due to its fast growth, superior wood properties and adaptability. However, the post-transcriptional regulatory mechanisms controlling tissue development and stress responses in Eucalyptus remain poorly understood. In this study, we performed a comprehensive analysis of the gene expression profile and the alternative splicing (AS) landscape of E. grandis using strand-specific RNA-Seq, which encompassed 201 libraries including different organs, developmental stages, and environmental stresses. We identified 10 416 genes (33.49%) that underwent AS, and numerous differentially expressed and/or differential AS genes involved in critical biological processes, such as primary-to-secondary growth transition of stems, adventitious root formation, aging and responses to phosphorus- or boron-deficiency. Co-expression analysis of AS events and gene expression patterns highlighted the potential upstream regulatory role of AS events in multiple processes. Additionally, we highlighted the lignin biosynthetic pathway to showcase the potential regulatory functions of AS events in the KNAT3 and IRL3 genes within this pathway. Our high-quality expression atlas and AS landscape serve as valuable resources for unravelling the genetic control of woody plant development, long-term adaptation, and understanding transcriptional diversity in Eucalyptus. Researchers can conveniently access these resources through the interactive ePlant browser (https://bar.utoronto.ca/eplant_eucalyptus).


Assuntos
Eucalyptus , Genes de Plantas , Genes de Plantas/genética , Eucalyptus/fisiologia , Processamento Alternativo/genética , Madeira , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
7.
Plant Biotechnol J ; 21(8): 1671-1681, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37155328

RESUMO

The fungal bioluminescence pathway (FBP) was identified from glowing fungi, which releases self-sustained visible green luminescence. However, weak bioluminescence limits the potential application of the bioluminescence system. Here, we screened and characterized a C3'H1 (4-coumaroyl shikimate/quinate 3'-hydroxylase) gene from Brassica napus, which efficiently converts p-coumaroyl shikimate to caffeic acid and hispidin. Simultaneous expression of BnC3'H1 and NPGA (null-pigment mutant in A. nidulans) produces more caffeic acid and hispidin as the natural precursor of luciferin and significantly intensifies the original fungal bioluminescence pathway (oFBP). Thus, we successfully created enhanced FBP (eFBP) plants emitting 3 × 1011 photons/min/cm2 , sufficient to illuminate its surroundings and visualize words clearly in the dark. The glowing plants provide sustainable and bio-renewable illumination for the naked eyes, and manifest distinct responses to diverse environmental conditions via caffeic acid biosynthesis pathway. Importantly, we revealed that the biosynthesis of caffeic acid and hispidin in eFBP plants derived from the sugar pathway, and the inhibitors of the energy production system significantly reduced the luminescence signal rapidly from eFBP plants, suggesting that the FBP system coupled with the luciferin metabolic flux functions in an energy-driven way. These findings lay the groundwork for genetically creating stronger eFBP plants and developing more powerful biological tools with the FBP system.


Assuntos
Engenharia Metabólica , Plantas , Luciferinas
8.
New Phytol ; 238(4): 1479-1497, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36797656

RESUMO

The acquisition of dormancy capabilities has enabled plants to survive in adverse terrestrial environmental conditions. Dormancy accumulation and release is coupled with light signaling, which is well studied in Arabidopsis, but it is unclear in the distant nonvascular relative. We study the characteristics and function on dormancy regulation of a blue light receptor cryptochrome in Marchantia polymorpha (MpCRY). Here, we identified MpCRY via bioinformatics and mutant complement analysis. The biochemical characteristics were assessed by multiple protein-binding assays. The function of MpCRY in gemma dormancy was clarified by overexpression and mutation of MpCRY, and its mechanism was analyzed via RNA sequencing and quantitative PCR analyses associated with hormone treatment. We found that the unique MpCRY protein in M. polymorpha undergoes both blue light-promoted interaction with itself (self-interaction) and blue light-dependent phosphorylation. MpCRY has the specific characteristics of blue light-induced nuclear localization and degradation. We further demonstrated that MpCRY transcriptionally represses abscisic acid (ABA) signaling-related gene expression to suppress gemma dormancy, which is dependent on blue light signaling. Our findings indicate that MpCRY possesses specific biochemical and molecular characteristics, and modulates ABA signaling under blue light conditions to regulate gemma dormancy in M. polymorpha.


Assuntos
Arabidopsis , Marchantia , Marchantia/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Plantas/metabolismo , Luz , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo
9.
J Integr Plant Biol ; 65(8): 1852-1858, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37203882

RESUMO

Brassinosteroids (BRs) are plant hormones that regulate wood formation in trees. Currently, little is known about the post-transcriptional regulation of BR synthesis. Here, we show that during wood formation, fine-tuning BR synthesis requires 3'UTR-dependent decay of Populus CONSTITUTIVE PHOTOMORPHOGENIC DWARF 1 (PdCPD1). Overexpression of PdCPD1 or its 3' UTR fragment resulted in a significant increase of BR levels and inhibited secondary growth. In contrast, transgenic poplars repressing PdCPD1 3' UTR expression displayed moderate levels of BR and promoted wood formation. We show that the Populus GLYCINE-RICH RNA-BINDING PROTEIN 1 (PdGRP1) directly binds to a GU-rich element in 3' UTR of PdCPD1, leading to its mRNA decay. We thus provide a post-transcriptional mechanism underlying BRs synthesis during wood formation, which may be useful for genetic manipulation of wood biomass in trees.


Assuntos
Populus , Madeira , Madeira/genética , Brassinosteroides/metabolismo , Regiões 3' não Traduzidas/genética , Populus/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas/genética
10.
J Integr Plant Biol ; 65(5): 1134-1146, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36647609

RESUMO

Lignin is a major component of plant cell walls and is essential for plant growth and development. Lignin biosynthesis is controlled by a hierarchical regulatory network involving multiple transcription factors. In this study, we showed that the gene encoding an APETALA 2/ethylene-responsive element binding factor (AP2/ERF) transcription factor, PagERF81, from poplar 84 K (Populus alba × P. glandulosa) is highly expressed in expanding secondary xylem cells. Two independent homozygous Pagerf81 mutant lines created by gene editing, produced significantly more but smaller vessel cells and longer fiber cells with more lignin in cell walls, while PagERF81 overexpression lines had less lignin, compared to non-transgenic controls. Transcriptome and reverse transcription quantitative PCR data revealed that multiple lignin biosynthesis genes including Cinnamoyl CoA reductase 1 (PagCCR1), Cinnamyl alcohol dehydrogenase 6 (PagCAD6), and 4-Coumarate-CoA ligase-like 9 (Pag4CLL9) were up-regulated in Pagerf81 mutants, but down-regulated in PagERF81 overexpression lines. In addition, a transient transactivation assay revealed that PagERF81 repressed the transcription of these three genes. Furthermore, yeast one hybrid and electrophoretic mobility shift assays showed that PagERF81 directly bound to a GCC sequence in the PagCCR1 promoter. No known vessel or fiber cell differentiation related genes were differentially expressed, so the smaller vessel cells and longer fiber cells observed in the Pagerf81 lines might be caused by abnormal lignin deposition in the secondary cell walls. This study provides insight into the regulation of lignin biosynthesis, and a molecular tool to engineer wood with high lignin content, which would contribute to the lignin-related chemical industry and carbon sequestration.


Assuntos
Lignina , Populus , Lignina/metabolismo , Populus/metabolismo , Xilema/metabolismo , Madeira/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
11.
J Cell Physiol ; 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538653

RESUMO

The gaseous ethylene (ET) and the oxylipin-derived jasmonic acid (JA) in plants jointly regulate an arsenal of pathogen responsive genes involved in defending against necrotrophic pathogens. The APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor ORA59 is a major positive regulator of the ET/JA-mediated defense pathway in Arabidopsis thaliana. The Arabidopsis agmatine coumaroyltransferase (AtACT) catalyzes the formation of hydroxycinnamic acid amides (HCAAs) which are effective toxic antimicrobial substances known as phytoalexins and play an important role in plant defense response. However, induction and regulation of AtACT gene expression and HCAAs synthesis in plants remain less understood. Through gene coexpression network analysis, we identified a list of GCC-box cis-element containing genes that were coexpressed with ORA59 under diverse biotic stress conditions and might be potential downstream targets of this AP2/ERF-domain transcription factor. Particularly, ORA59 directly binds to AtACT gene promoter via the GCC-boxes and activates AtACT gene expression. The ET precursor 1-aminocyclopropane-1-carboxylic acid (ACC)-treatment significantly induces AtACT gene expression. Both ORA59 and members of the class II TGA transcription factors are indispensable for ACC-induced AtACT expression. Interestingly, the expression of AtACT is also subject to the signaling crosstalk of the salicylic acid- and ET/JA-mediated defense response pathways. In addition, we found that genes of the phenylpropanoid metabolism pathway were specifically induced by Botrytis cinerea. Taking together, these evidence suggest that the ET/JA signaling pathway activate the expression of AtACT to increase antimicrobial HCAAs production through the transcription factor ORA59 in response to the infection of necrotrophic plant pathogens.

12.
Planta ; 255(5): 101, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397691

RESUMO

MAIN CONCLUSION: PdeHCA2 regulates the transition from primary to secondary growth, plant architecture, and affects photosynthesis by targeting PdeBRC1 and controlling the anatomy of the mesophyll, and intercellular space, respectively. Branching, secondary growth, and photosynthesis are vital developmental processes of woody plants that determine plant architecture and timber yield. However, the mechanisms underlying these processes are unknown. Here, we report that the Populus transcription factor High Cambium Activity 2 (PdeHCA2) plays a role in the transition from primary to secondary growth, vascular development, and branching. In Populus, PdeHCA2 is expressed in undifferentiated provascular cells during primary growth, in phloem cells during secondary growth, and in leaf veins, which is different from the expression pattern of its homolog in Arabidopsis. Overexpression of PdeHCA2 has pleiotropic effects on shoot and leaf development; overexpression lines showed delayed growth of shoots and leaves, reduced photosynthesis, and abnormal shoot branching. In addition, auxin-, cytokinin-, and photosynthesis-related genes were differentially regulated in these lines. Electrophoretic mobility shift assays and transcriptome analysis indicated that PdeHCA2 directly up-regulates the expression of BRANCHED1 and the MADS-box gene PdeAGL9, which regulate plant architecture, by binding to cis-elements in the promoters of these genes. Taken together, our findings suggest that HCA2 regulates several processes in woody plants including vascular development, photosynthesis, and branching by affecting the proliferation and differentiation of parenchyma cells.


Assuntos
Arabidopsis , Populus , Arabidopsis/metabolismo , Biomassa , Câmbio , Regulação da Expressão Gênica de Plantas , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/metabolismo
13.
J Exp Bot ; 73(22): 7298-7311, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36001042

RESUMO

Adventitious root (AR) development is an extremely complex biological process that is affected by many intrinsic factors and extrinsic stimuli. Some WUSCHEL-related homeobox (WOX) transcription factors have been reported to play important roles in AR development, but their functional relationships with auxin signaling are poorly understood, especially the developmental plasticity of roots in response to adversity stress. Here, we identified that the WOX11/12a-SMALL AUXIN UP RNA36 (SAUR36) module mediates AR development through the auxin pathway in poplar, as well as under salt stress. PagWOX11/12a displayed inducible expression during AR development, and overexpression of PagWOX11/12a significantly promoted AR development and increased salt tolerance in poplar, whereas dominant repression of PagWOX11/12a produced the opposite phenotype. PagWOX11/12a proteins directly bind to the SAUR36 promoter to regulate SAUR36 transcription, and this binding was enhanced during salt stress. Genetic modification of PagWOX11/12a-PagSAUR36 expression revealed that the PagWOX11/12a-PagSAUR36 module is crucial for controlling AR development via the auxin pathway. Overall, our results indicate that a novel WOX11-SAUR-auxin signaling regulatory module is required for AR development in poplar. These findings provide key insights and a better understanding of the involvement of WOX11 in root developmental plasticity in saline environments.

14.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077484

RESUMO

Peroxisomes are a class of simple organelles that play an important role in plant reactive oxygen species (ROS) metabolism. Experimental evidence reveals the involvement of ROS in programmed cell death (PCD) in plants. Plant PCD is crucial for the regulation of plant growth, development and environmental stress resistance. However, it is unclear whether the ROS originated from peroxisomes participated in cellular PCD. Enzymes involved in the peroxisomal ROS metabolic pathways are key mediators to figure out the relationship between peroxisome-derived ROS and PCD. Here, we summarize the peroxisomal ROS generation and scavenging pathways and explain how peroxisome-derived ROS participate in PCD based on recent progress in the functional study of enzymes related to peroxisomal ROS generation or scavenging. We aimed to elucidate the role of the peroxisomal ROS regulatory system in cellular PCD to show its potential in terms of accurate PCD regulation, which contribute to environmental stress resistance.


Assuntos
Apoptose , Peroxissomos , Apoptose/fisiologia , Redes e Vias Metabólicas , Peroxissomos/metabolismo , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628391

RESUMO

Leaf morphogenesis requires precise regulation of gene expression to achieve organ separation and flat-leaf form. The poplar KNOTTED-like homeobox gene PagKNAT2/6b could change plant architecture, especially leaf shape, in response to drought stress. However, its regulatory mechanism in leaf development remains unclear. In this work, gene expression analyses of PagKNAT2/6b suggested that PagKNAT2/6b was highly expressed during leaf development. Moreover, the leaf shape changes along the adaxial-abaxial, medial-lateral, and proximal-distal axes caused by the mis-expression of PagKNAT2/6b demonstrated that its overexpression (PagKNAT2/6b OE) and SRDX dominant repression (PagKNAT2/6b SRDX) poplars had an impact on the leaf axial development. The crinkle leaf of PagKNAT2/6b OE was consistent with the differential expression gene PagBOP1/2a (BLADE-ON-PETIOLE), which was the critical gene for regulating leaf development. Further study showed that PagBOP1/2a was directly activated by PagKNAT2/6b through a novel cis-acting element "CTCTT". Together, the PagKNAT2/6b-PagBOP1/2a module regulates poplar leaf morphology by affecting axial development, which provides insights aimed at leaf shape modification for further improving the drought tolerance of woody plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Populus , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Organogênese Vegetal , Folhas de Planta/metabolismo , Populus/genética , Populus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216331

RESUMO

A highly efficient Agrobacterium-mediated transformation method is needed for the molecular study of model tree species such as hybrid poplar 84K (Populus alba × P. glandulosa cv. '84K'). In this study, we report a callus-based transformation method that exhibits high efficiency and reproducibility. The optimized callus induction medium (CIM1) induced the development of calli from leaves with high efficiency, and multiple shoots were induced from calli growing on the optimized shoot induction medium (SIM1). Factors affecting the transformation frequency of calli were optimized as follows: Agrobacterium concentration sets at an OD600 of 0.6, Agrobacterium infective suspension with an acetosyringone (AS) concentration of 100 µM, infection time of 15 min, cocultivation duration of 2 days and precultivation duration of 6 days. Using this method, transgenic plants are obtained within approximately 2 months with a transformation frequency greater than 50%. Polymerase chain reaction (PCR), reverse transcription-PCR (RT-PCR) and ß-galactosidase (GUS) histochemical staining analyses confirmed the successful generation of stable transformants. Additionally, the calli from leaves were subcultured and used to obtain new explants; the high transformation efficiency was still maintained in subcultured calli after 6 cycles. This method provides a reference for developing effective transformation protocols for other poplar species.


Assuntos
Acetofenonas/metabolismo , Populus/genética , Transformação Genética/genética , Agrobacterium tumefaciens/genética , Vetores Genéticos/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Reprodutibilidade dos Testes
17.
J Integr Plant Biol ; 64(1): 73-86, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34845845

RESUMO

Wood is produced by the accumulation of secondary xylem via proliferation and differentiation of the cambium cells in woody plants. Identifying the regulators involved in this process remains a challenging task. In this study, we isolated PagSAG101a, the homolog of Arabidopsis thaliana SAG101, from a hybrid poplar (Populus alba × Populus glandulosa) clone 84K and investigated its role in secondary xylem development. PagSAG101a was expressed predominantly in lignified stems and localized in the nucleus. Compared with non-transgenic 84K plants, transgenic plants overexpressing PagSAG101a displayed increased plant height, internode number, stem diameter, xylem width, and secondary cell wall thickness, while opposite phenotypes were observed for PagSAG101a knock-out plants. Transcriptome analyses revealed that differentially expressed genes were enriched for those controlling cambium cell division activity and subsequent secondary cell wall deposition during xylem formation. In addition, the tandem CCCH zinc finger protein PagC3H17, which positively regulates secondary xylem width and secondary wall thickening in poplar, could bind to the promoter of PagSAG101a and mediate the regulation of xylem differentiation. Our results support that PagSAG101a, downstream of PagC3H17, functions in wood development.


Assuntos
Populus , Câmbio/genética , Câmbio/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Populus/metabolismo , Madeira/genética , Xilema/genética
18.
BMC Plant Biol ; 21(1): 253, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082706

RESUMO

BACKGROUND: Root hydraulic conductance is primarily determined by the conductance of living tissues to radial water flow. Plasma membrane intrinsic proteins (PIPs) in root cortical cells are important for plants to take up water and are believed to be directly involved in cell growth. RESULTS: In this study, we found that constitutive overexpression of the poplar root-specific gene PtoPIP1;1 in Arabidopsis accelerated bolting and flowering. At the early stage of the developmental process, PtoPIP1;1 OE Arabidopsis exhibited faster cell growth in both leaves and roots. The turgor pressure of plants was correspondingly increased in PtoPIP1;1 OE Arabidopsis, and the water status was changed. At the same time, the expression levels of flowering-related genes (CRY1, CRY2 and FCA) and hub genes in the regulatory networks underlying floral timing (FT and SOC1) were significantly upregulated in OE plants, while the floral repressor FLC gene was significantly downregulated. CONCLUSIONS: Taken together, the results of our study indicate that constitutive overexpression of PtoPIP1;1 in Arabidopsis accelerates bolting and flowering through faster cell growth in both the leaf and root at an early stage of the developmental process. The autonomous pathway of flowering regulation may be executed by monitoring developmental age. The increase in turgor and changes in water status with PtoPIP1;1 overexpression play a role in promoting cell growth.


Assuntos
Aquaporinas/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Plantas/metabolismo , Populus/metabolismo , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Transpiração Vegetal , Plantas Geneticamente Modificadas , Populus/genética
19.
Plant Biotechnol J ; 19(11): 2249-2260, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34170605

RESUMO

The WUSCHEL-related homeobox (WOX) transcription factors WOX11 and WOX12 regulate adventitious rooting and responses to stress. The underlying physiological and molecular regulatory mechanisms in salt stress tolerance remain largely unexplored. Here, we characterized the roles of PagWOX11/12a from 84K poplar (Populus alba × P. glandulosa) and the underlying regulatory mechanism in salt stress. PagWOX11/12a was strongly induced by salt stress in roots. Overexpression of PagWOX11/12a in poplar enhanced salt tolerance, as evident by the promotion of growth-related biomass. In contrast, salt-treated PagWOX11/12a dominant repression plants displayed reduced biomass growth. Under salt stress conditions, PagWOX11/12a-overexpressed lines showed higher reactive oxygen species (ROS) scavenging capacity and lower accumulation of hydrogen peroxide (H2 O2 ) than non-transgenic 84K plants, whereas the suppressors displayed the opposite phenotype. In addition, PagWOX11/12a directly bound to the promoter region of PagCYP736A12 and regulated PagCYP736A12 expression. The activated PagCYP736A12 could enhance ROS scavenging, thus reducing H2 O2 levels in roots under salt stress in PagWOX11/12a-overexpressed poplars. The collective results support the important role of PagWOX11/12a in salt acclimation of poplar trees, indicating that PagWOX11/12a enhances salt tolerance through modulation of ROS scavenging by directly regulating PagCYP736A12 expression in poplar.


Assuntos
Populus , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Populus/metabolismo , Tolerância ao Sal/genética
20.
J Exp Bot ; 72(15): 5625-5637, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33987654

RESUMO

Plant architecture is genetically controlled, but is influenced by environmental factors. Plants have evolved adaptive mechanisms that allow changes in their architecture under stress, in which phytohormones play a central role. However, the gene regulators that connect growth and stress signals are rarely reported. Here, we report that a class I KNOX gene, PagKNAT2/6b, can directly inhibit the synthesis of gibberellin (GA), altering plant architecture and improving drought resistance in Populus. Expression of PagKNAT2/6b was significantly induced under drought conditions, and transgenic poplars overexpressing PagKNAT2/6b exhibited shorter internode length and smaller leaf size with short or even absent petioles. Interestingly, these transgenic plants showed improved drought resistance under both short- and long-term drought stress. Histological observations indicated that decreased internode length and leaf size were mainly caused by the inhibition of cell elongation and expansion. GA content was reduced, and the GA20-oxidase gene PagGA20ox1 was down-regulated in overexpressing plants. Expression of PagGA20ox1 was negatively related to that of PagKNAT2/6b under drought stress. ChIP and transient transcription activity assays revealed that PagGA20ox1 was directly targeted by PagKNAT2/6b. Therefore, this study provides evidence that PagKNAT2/6b mediates stress signals and changes in plant architecture via GA signaling by down-regulating PagGA20ox1.


Assuntos
Populus , Secas , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Populus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA