Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(37): 49575-49588, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39080164

RESUMO

The heavy metal contamination in river and lake sediments endangers aquatic ecosystems. Herein, the feasibility of applying different exogenous mesophile consortiums in bioleaching multiple heavy metal-contaminated sediments from Xiangjiang River was investigated, and a comprehensive functional gene array (GeoChip 5.0) was used to analyze the functional gene expression to reveal the intrinsic association between metal solubilization efficiency and consortium structure. Among four consortiums, the Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans consortium had the highest solubilization efficiencies of Cu, Pb, Zn, and Cd after 15 days, reaching 50.33, 29.93, 47.49, and 79.65%, while Cu, Pb, and Hg had the highest solubilization efficiencies after 30 days, reaching 63.67, 45.33, and 52.07%. Geochip analysis revealed that 31,346 genes involved in different biogeochemical processes had been detected, and the systems of 15 days had lower proportions of unique genes than those of 30 days. Samples from the same stage had more genes overlapping with each other than those from different stages. Plentiful metal-resistant and organic remediation genes were also detected, which means the metal detoxification and organic pollutant degradation had happened with the bioleaching process. The Mantel test revealed that Pb, Zn, As, Cd, and Hg solubilized from sediment influenced the structure of expressed microbial functional genes during bioleaching. This work employed GeoChip to demonstrate the intrinsic association between functional gene expression of mesophile consortiums and the bioleaching efficiency of heavy metal-contaminated sediment, and it provides a good reference for future microbial consortium design and remediation of river and lake sediments.


Assuntos
Sedimentos Geológicos , Metais Pesados , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Poluentes Químicos da Água
2.
Int J Biol Macromol ; 279(Pt 1): 135016, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39181353

RESUMO

Aspartic proteases (APs) constitute a large family in plants and are widely involved in diverse biological processes, like chloroplast metabolism, biotic and abiotic stress responses, and reproductive development. In this study, we focused on overall analysis of the APs genes in tobacco. Our analysis included the phylogeny and cis-elements in the cell wall-associated promoters of these genes. To characterize the expression patterns of APs genes in stem vascular development. The tissue expression analysis showed that NtAED3-like was preferentially expressed in the differentiating xylem and phloem cells of the vascular system. Based on histochemical staining analysis showed that the NtAED3-like gene was specifically expressed in stem vascular tissue, root vascular tissue, and petiole vascular tissue. The TdT-mediated dUTP nick-end labeling (TUNEL) assay illustrated a delayed progression of programmed cell death (PCD) within the xylem of the ko-ntaed3a-like mutant, relative to the wild type. The mutant ko-ntaed3a-like exhibited a phenotype of thinning stem circumference and changed in xylem structure and lignin content. In addition, the two-dimension heteronuclear single quantum coherent nuclear magnetic resonance (2D-HSQC) analysis of three milled wood lignins (MWLs) showed that the content of ß-O-4 connection in ko-ntaed3a-like decreased slightly compared with wild type. In conclusion, this study provides our understanding of the regulation of vascular tissue development by the NtAED3-like gene in tobacco and provides a better basis for determining the molecular mechanism of the aspartic protease in secondary cell wall (SCW) development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA