Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Environ Sci Technol ; 58(19): 8228-8238, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38695658

RESUMO

Inhalation of fine particulate matter PM2.5-bound arsenic (PM2.5-As) may cause significant cardiovascular damage, due to its high concentration, long transmission range, and good absorption efficiency in organisms. However, both the contribution and the effect of the arsenic exposure pathway, with PM2.5 as the medium, on cardiovascular system damage in nonferrous smelting sites remain to be studied. In this work, a one-year site sample collection and analysis work showed that the annual concentration of PM2.5-As reached 0.74 µg/m3, which was 120 times the national standard. The predominant species in the PM2.5 samples were As (V) and As (III). A panel study among workers revealed that PM2.5-As exposure dominantly contributed to human absorption of As. After exposure of mice to PM2.5-As for 8 weeks, the accumulation of As in the high exposure group reached equilibrium, and its bioavailability was 24.5%. A series of animal experiments revealed that PM2.5-As exposure induced cardiac injury and dysfunction at the environmental relevant concentration and speciation. By integrating environmental and animal exposure assessments, more accurate health risk assessment models exposed to PM2.5-As were established for metal smelting areas. Therefore, our research provides an important scientific basis for relevant departments to formulate industry supervision, prevention and control policies.


Assuntos
Arsênio , Material Particulado , Humanos , Camundongos , Animais , Exposição Ocupacional , Doenças Cardiovasculares , Medição de Risco , Disponibilidade Biológica , Poluentes Atmosféricos , Metalurgia
2.
Environ Sci Technol ; 57(4): 1743-1754, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36683337

RESUMO

Lead is known to have toxic effects on the cardiovascular system. Owing to its high concentration, transmission range, and absorption efficiency in organisms, inhalation of fine particulate matter (PM2.5)-bound lead (PM2.5-Pb) may cause significant cardiovascular damage. However, the contribution and adverse effects of PM2.5-Pb on workers and residents in non-ferrous metal smelting areas are not fully understood. In this work, the concentration and chemical speciation of PM2.5-Pb were analyzed to determine its pollution characteristics at a typical non-ferrous metal smelting site. A panel study conducted among factory workers revealed that PM2.5-Pb exposure makes an important contribution to the human absorption of Pb. Although the chemical speciation of PM2.5-Pb suggested poor water solubility, a high bioavailability was observed in mice (tissue average value: 50.1%, range: 31.1-71.1%) subjected to inhalation exposure for 8 weeks. Based on the bioavailability data, the relationship between PM2.5-Pb exposure and cardiovascular damage was evaluated in animal simulation experiments. Finally, a damage threshold and cardiovascular-specific risk assessment model were established for the non-ferrous metal smelting area. Our project not only accurately estimates the risk of PM2.5-bound heavy metals on the cardiovascular system but also offers a scientific basis for future prevention and therapy of PM2.5-Pb-related diseases.


Assuntos
Poluentes Atmosféricos , Doenças Cardiovasculares , Metais Pesados , Humanos , Camundongos , Animais , Disponibilidade Biológica , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Chumbo , Monitoramento Ambiental , Fatores de Risco , Material Particulado/análise , Medição de Risco , Fatores de Risco de Doenças Cardíacas , China , Poluentes Atmosféricos/análise
3.
J Environ Manage ; 276: 111359, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32949844

RESUMO

Struvite precipitated from wastewaters is an important fertilizer. However, struvite derived from wastewater usually contains toxic Pb, which can bring contamination to soil and even plants. Thus, understanding the incorporation mechanisms of Pb2+ during struvite precipitation is critical to its safe application. Here the influence of Pb concentration on struvite precipitation was assessed. When the initial Pb concentrations were at the range of 0.1-1 mg/L, the formation of pitting and roughening on struvite crystal surfaces was observed by scanning electron microscopy (SEM), indicating a surface interaction between Pb and struvite. Combined with X-ray photoelectron spectra (XPS), the results confirmed that the formed Pb-enriched layer with Pb-OH and Pb-PO4 bonds was absorbed on struvite surface during precipitation. When Pb concentrations were increased to 10-100 mg/L, the precipitation of dominating Pb phase, crystalline Pb10(PO4)6(OH)2, was confirmed by X-ray diffraction (XRD). Combined with XPS, the amorphous Pb hydroxide/phosphate and Mg phosphate were also detected in struvite solids. Our findings revealed that at low concentrations (0.1-1 mg/L), Pb can affect the mineral surface by surface absorption, whereas Pb precipitated as separated phase(s) (e.g. Pb10(PO4)6(OH)2, Pb hydroxide and/or phosphate) at high Pb concentrations (10-100 mg/L). Thus, the initial Pb2+ concentrations in wastewater will dictate final struvite contents and Pb-bearing phases in recovered solids.


Assuntos
Chumbo , Compostos de Magnésio , Precipitação Química , Fosfatos/análise , Estruvita , Águas Residuárias
4.
J Environ Manage ; 238: 102-109, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30849594

RESUMO

Studies on the oxidation products of organic pollutants and their toxicity in textile dyeing sludge after the sludge was treated by the advance oxidation processes were limited, since textile dyeing sludge was a complicated mixture. For the first time, simulated sludge was used to study the degradation mechanism of 3,3'-dimethoxybenzidine (DMB) during the combined ultrasound-Mn(VII) treatment. The toxicity of DMB and its products was also evaluated. The results indicated that the compositions and microstructures of polyaluminium chloride (PAC)- and polyferric sulphate (PFS)-based simulated sludge were similar to those of real textile dyeing sludge. The optimum conditions of ultrasound-Mn(VII) treatment were: a KMnO4 dosage of 40 µM, an ultrasound power density of 0.36 W cm-3, and a reaction time of 20 min. 98.24% of DMB and 63.04% of total organic carbon (TOC) in the simulated sludge were removed. Six products, that is, 2-nitroanisole, 3-methoxy-4-nitrophenol, vanillylmandelic acid, vanillyl alcohol, m-anisic acid, and benzoic acid, were identified by GC-MS and LC-MS-MS. It was noted that all of these identified products were also detected in the real textile dyeing sludge after the ultrasound-Mn(VII) treatment. All of them were less toxic than DMB. Moreover, 53.30% and 54.80% of toxicity toward the alga Desmodesmus subspicatus and the bacterium Vibrio fischeri were removed in simulated sludge, respectively. Therefore, simulated sludge was helpful for studying a pollutant's degradation mechanism in the complex sludge mixtures. The results would also provide some useful suggestions for the sludge disposal after the sludge was treated by the advance oxidation processes.


Assuntos
Esgotos , Poluentes Químicos da Água , Dianisidina , Oxirredução , Eliminação de Resíduos Líquidos
5.
J Struct Biol ; 189(3): 230-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25600412

RESUMO

The serpulid tubeworm, Hydroides elegans, is an ecologically and economically important species whose biology has been fairly well studied, especially in the context of larval development and settlement on man-made objects (biofouling). Nevertheless, ontogenetic changes associated with calcareous tube composition and structures have not yet been studied. Here, the ultrastructure and composition of the calcareous tubes built by H. elegans was examined in the three early calcifying juvenile stages and in the adult using XRD, FTIR, ICP-OES, SEM and Raman spectroscopy. Ontogenetic shifts in carbonate mineralogy were observed, for example, juvenile tubes contained more amorphous calcium carbonate and were predominantly aragonitic whereas adult tubes were bimineralic with considerably more calcite. The mineral composition gradually shifted during the tube development as shown by a decrease in Sr/Ca and an increase of Mg/Ca ratios with the tubeworm's age. The inner tube layer contained calcite, whereas the outer layer contained aragonite. Similarly, the tube complexity in terms of ultrastructure was associated with development. The sequential appearance of unoriented ultrastructures followed by oriented ultrastructures may reflect the evolutionary history of serpulid tube biominerals. As aragonitic structures are more susceptible to dissolution under ocean acidification (OA) conditions but are more difficult to be removed by anti-fouling treatments, the early developmental stages of the tubeworms may be vulnerable to OA but act as the important target for biofouling control.


Assuntos
Poliquetos/fisiologia , Poliquetos/ultraestrutura , Animais , Incrustação Biológica , Cálcio/análise , Carbonato de Cálcio/análise , Embrião não Mamífero , Feminino , Magnésio/análise , Masculino , Metamorfose Biológica , Microscopia Eletrônica de Varredura , Poliquetos/embriologia , Poliquetos/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
6.
Environ Sci Technol ; 49(9): 5672-80, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25850557

RESUMO

The mineralization of perfluorinated alkyl substances (PFASs) by calcium compounds during the waste thermal treatment was systemically studied. Different calcium compounds showed different mineralization efficiencies of PFASs during the thermal process, owing to the different reaction mechanisms. Calcium hydroxide was recommended as the most effective Ca reagent for PFAS defluorination because the carbon-fluorine bonds in PFASs can be converted to carbon-hydrogen bonds via the hydrodefluorination reaction. PFASs with different chain lengths and functional groups were further investigated for their potentially different mineralization behavior. The results showed that the chain length of PFASs had an insignificant effect on the mineralization efficiency by calcium hydroxide. The thermogravimetric analysis-differential thermal analysis (TGA-DTA) also revealed that perfluorooctanesulfonate (PFOS) and perfluorohexanesulfonate (PFHxS) (with different chain lengths) had a similar thermal behavior. However, PFASs with different functional groups showed different mineralization behavior with calcium hydroxide in relation to their different thermal decomposition temperatures. Finally, the mineralization ratio of polytetrafluoroethylene (PTFE) particles by calcium hydroxide could reach 80% or higher when the temperature was above 400 °C. The gas chromatography/mass spectrometry (GC/MS) results demonstrated much reduced production of gaseous fluorocarbon fragments during PTFE decomposition when coexisting with calcium hydroxide.


Assuntos
Ácidos Alcanossulfônicos/química , Hidróxido de Cálcio/química , Flúor/química , Fluorocarbonos/química , Halogenação , Eliminação de Resíduos/métodos , Temperatura , Resíduos/análise , Meio Ambiente , Espectrometria de Massas , Minerais/química , Politetrafluoretileno/química , Termogravimetria , Difração de Raios X
7.
Mol Biotechnol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755468

RESUMO

Acute pancreatitis (AP) is the most prevalent gastrointestinal inflammatory disease. Circular RNAs (circRNAs) are implicated in the development of AP. Here, we identified the precise action of circ_0029407 in AP development. Human pancreatic epithelial cells (HPECs) were stimulated with caerulein. Cell viability, proliferation, and apoptosis were gauged by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays, respectively. Circ_0029407, microRNA (miR)-579-3p, and toll-like receptor 4 (TLR4) were quantified by a qRT-PCR or western blot assay. Dual-luciferase reporter and RNA pull-down assays were performed to evaluate the direct relationship between miR-579-3p and circ_0029407 or TLR4. Our results indicated that circ_0029407 was markedly overexpressed in AP serum samples and caerulein-stimulated HPECs. Reduction of circ_0029407 attenuated caerulein-imposed HPEC damage by promoting cell proliferation and repressing cell apoptosis and inflammation. Mechanistically, circ_0029407 contained a miR-579-3p binding site, and miR-579-3p downregulation reversed the effect of circ_0029407 reduction on caerulein-imposed HPEC damage. TLR4 was identified as a direct and functional target of miR-579-3p, and TLR4 overexpression reversed the impact of miR-579-3p upregulation on attenuating caerulein-imposed HPEC damage. Moreover, circ_0029407 regulated the TLR4/nuclear factor NF-kappaB (NF-κB) signaling by acting as a competing endogenous RNA (ceRNA) for miR-579-3p. Our study suggests that circ_0029407 regulates caerulein-imposed cell injury in human pancreatic cells at least in part via the TLR4/NF-κB signaling pathway by functioning as a ceRNA for miR-579-3p.

8.
Chemosphere ; 346: 140610, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925027

RESUMO

During the struvite recovery process, Cd, a hazardous metal commonly found in waste streams, can be sequestered by struvite. This study investigated the influence of Cd2+ on the precipitation of struvite. Quantitative X-ray diffraction (QXRD) results showed that the purity of struvite decreased from 99.1% to 73.6% as Cd concentration increased from 1 to 500 µM. Scanning electron microscopy (SEM) revealed a roughened surface of struvite, and X-ray photoelectron spectroscopy (XPS) analysis indicated that the peak area ratio of Cd-OH increased from 19.4% to 51.3%, while the area ratio of Cd-PO4 decreased from 86.6% to 48.7% as Cd concentrations increased from 10 to 500 µM. The findings suggested that Cd2+ disrupted the crystal growth of struvite, and mainly combined with -OH and -PO4 to form amorphous Cd-bearing compounds co-precipitated with struvite. Additionally, Mg-containing amorphous phases were formed by incorporating Mg2+ with -OH and -PO4 during struvite formation.


Assuntos
Fosfatos , Fósforo , Estruvita , Fósforo/química , Fosfatos/química , Cádmio , Compostos de Magnésio/química , Precipitação Química
9.
J Hazard Mater ; 468: 133743, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377901

RESUMO

In this study, we examined the distribution of per- and polyfluoroalkyl substances (PFASs) in liver and bile tissues from the patients with liver cancer (n = 202) and healthy controls (n = 30), and calculated the hepatobiliary transport efficiency (TB-L) of PFASs. Among 21 PFASs, 13 PFASs were frequently detected in the liver (median: 8.80-16.3 ng/g) and bile (median: 11.03-14.26 ng/mL) samples. PFAS concentrations in liver were positively correlated with age, with higher levels of PFASs in the older. Variance analysis showed that gender and BMI (Body Mass Index) have an important impact on the distribution of PFASs. A U-shaped trend in TB-L of PFASs with the increasing of carbon chain length was found for the first time, and the TB-L of most PFASs in the control was higher than that of those in cases (p < 0.05), suggesting that hepatic injury would affect their transport. PFASs were positively associated with liver injury biomarkers, including γ-glutamyl transferase (GGT), alanine aminotransferase (ALT), and total bilirubin (TB) levels (p < 0.05). This is the first study on examining the hepatobiliary transport characteristics of PFASs, which may help understand the connection between PFAS accumulation and liver cancer risk.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Neoplasias Hepáticas , Poluentes Químicos da Água , Humanos , Fluorocarbonos/análise , Biomarcadores , Ácidos Alcanossulfônicos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
10.
Chemosphere ; 357: 142068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636921

RESUMO

Due to limited land availability in municipal wastewater treatment plants, integrated fixed-film activated sludge (IFAS) technology offers significant advantages in improving nitrogen removal performance and treatment capacity. In this study, two systems, IFAS and Anaerobic-Anoxic-Oxic Activated sludge process (AAO), were compared by adjusting parameters such as hydraulic retention time (HRT), nitrifying solution recycle ratio, sludge recycle ratio, and dissolved oxygen (DO). The objective was to investigate pollutant removal capacity and differences in microbial community composition between the two systems. The study showed that, at an HRT of 12 h, the IFAS system exhibited an average increase of 5.76%, 8.85%, and 12.79% in COD, NH4+-N, and TN removal efficiency respectively, compared to the AAO system at an HRT of 16 h. The TP concentration in the IFAS system reached 0.82 mg/L without the use of additives. The IFAS system demonstrated superior effluent results under lower operating conditions of HRT, nitrification solution recycle ratio, and DO. The 16S rDNA analysis revealed higher abundance of denitrification-related associated flora, including Proteobacteria, Bacteroidetes, and Planctomycetota, in the IFAS system compared to the AAO system. Similarities were observed between microorganisms attached to the media and activated sludge in the anaerobic, anoxic, and oxic tanks. q-PCR analysis indicated that the incorporation of filler material in the IFAS system resulted in similar abundance of nitrifying bacteria genes on the biofilm as in the oxic tank. Additionally, denitrifying genes showed higher levels due to aeration scouring and the presence of alternating aerobic-anaerobic environments on the biofilm surface, enhancing nitrogen removal efficiency.


Assuntos
Reatores Biológicos , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/metabolismo , Nitrogênio/análise , Reatores Biológicos/microbiologia , Anaerobiose , Nitrificação , Desnitrificação , Águas Residuárias/química , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Oxigênio/análise , Oxigênio/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
11.
Environ Sci Technol ; 47(17): 9972-8, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23915263

RESUMO

A novel and effective process of thermal reduction treatment with the addition of metallic iron (Fe(0)) to recover lead from cathode ray tube (CRT) funnel glass is introduced. The key technological breakthrough of this process is the use of a relatively lower temperature and an inexpensive reducing agent to extract the metallic lead. The influences of temperature, the reducing agent content, and the holding time for lead reduction were examined to determine the optimal extraction efficiency. The lead extraction efficiency first increased and then decreased with increasing temperature. The maximum lead extraction efficiency occurred at 700 °C. The growth of crystalline lead first increased significantly with an increase in the Fe content, reaching maximum growth at an Fe addition of 50 wt %. The most effective treatment time was determined to be 30 min, as the vitrification of lead back to the glass matrix occurred under longer treatment times. The experimentally derived results indicate that a 58 wt % lead extraction can be achieved with the optimized operational parameters (50 wt % Fe addition, heating at 700 °C for 30 min) in a single extraction operation.


Assuntos
Resíduo Eletrônico/análise , Vidro/química , Chumbo/química , Reciclagem/métodos , Gerenciamento de Resíduos/métodos , Tubo de Raio Catódico , Química Verde/métodos , Ferro/química , Análise dos Mínimos Quadrados , Microscopia Eletrônica de Varredura , Oxirredução , Espectrometria por Raios X , Temperatura , Fatores de Tempo , Difração de Raios X
12.
Environ Sci Technol ; 47(6): 2621-7, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23360134

RESUMO

The fate and transport of the fluorine in perfluorooctanesulfonate (PFOS) during the thermal treatment of lime-conditioned sludge were observed using both qualitative and quantitative X-ray diffraction techniques. Two main fluorine mineralization mechanisms leading to the substantial formation of CaF2 and Ca5(PO4)3F phases were observed. They had a close relationship with the thermal treatment condition and the PFOS content of the sludge. At low temperatures (300-600 °C), CaF2 dominated in the product and increases in treatment time and temperature generally enhanced the fluorine transformation. However, at higher temperatures (700-900 °C), increases in treatment time and temperature had a negative effect on the overall efficiency of the fluorine crystallization. The results suggest that in the high temperature environment there were greater losses of gaseous products such as HF and SiF4 in the transformation of CaF2 to Ca5(PO4)3F, the hydrolysis of CaF2, and the reaction with SiO2. The quantitative analysis also showed that when treating sludge with low PFOS content at high temperatures, the formation of Ca5(PO4)3F may be the primary mechanism for the mineralization of the fluorine in PFOS. The overall results clearly indicate the variations in the fate and transport of fluorine in PFOS when the sludge is subject to different PFOS contents and treatment types, such as heat drying or incineration.


Assuntos
Ácidos Alcanossulfônicos/química , Poluentes Ambientais/química , Flúor/análise , Fluorocarbonos/química , Incineração , Esgotos/química , Temperatura Alta
13.
Chemosphere ; 340: 139957, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633606

RESUMO

Lanthanum modified bentonite (LMB) is a widely used adsorbent for removing inorganic phosphorus from polluted water to prevent eutrophication. However, its efficiency can be affected by various environmental factors, including dissolved organic matter (DOM), which is still unclear. In this study, we systematically explored the influence of model DOMs, including HA, bovine serum albumin (BSA), and sodium alginate (SA), on phosphate adsorption by LMB, as well as to elucidate the underlying adsorption mechanisms. Our results showed that only HA had a significant effect on phosphate adsorption by LMB, causing inhibition. When three DOMs were mixed with phosphate in different proportions and DOM was mainly HA, the performance of phosphate adsorption on LMB became worse, while BSA can slightly offset this impact. The kinetics of HA and phosphate adsorption on LMB followed the pseudo-second-order kinetic model, and isotherms fitted the Langmuir model, with a maximum adsorption capacity of 5.7 mg g-1 for P and 12 mg g-1 for HA. However, when HA and phosphate were mixed based on their Qm, a C/P molar ratio of 5.35, LMB preferentially adsorbed phosphate. HA invasion was also disadvantageous for phosphate removal by LMB, in which P adsorption was less efficient at low-concentrations. However, during co-adsorption the adsorption capacity for HA was higher. With a secondary addition of higher levels of P, both pollutants were adsorbed more effectively. In the natural water experiment, phosphate concentration decreased with increasing shaking time, while the UV254 value showed a downward trend, indicating that LMB also adsorbed HA. Characterization results showed that La and phosphate formed LaPO4 precipitation, forming La-O-P inner-sphere complexes as the main mechanism of phosphate removal by LMB. La and HA formed La-HA complexes, with O-CO bonds from HA competing for lanthanum with phosphate. Despite HA obstructing pores from adsorbent, LMB still maintained a good binding ability with phosphate. It may form La-P-HA ternary complexes during adsorption to keep HA adsorption amount.


Assuntos
Matéria Orgânica Dissolvida , Fosfatos , Bentonita , Lantânio , Adsorção , Soroalbumina Bovina
14.
Sci Total Environ ; 817: 152976, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026242

RESUMO

Struvite precipitation is a promising strategy for the simultaneous recovery of nitrogen and phosphorus from waste streams. However, waste streams typically contain high amounts of metal contaminants, including Ni, which can be easily sequestered by struvite, but the behavior of Ni during struvite precipitation remains unclear. Thus, this study investigates the influence of Ni concentrations on struvite precipitation. The quantitative X-ray diffraction (QXRD) results revealed that the purity of struvite decreased from 96.6 to 41.1% with the Ni concentrations increased from 0.1-100 mg·L-1. At lower Ni concentrations of 0.1-1 mg·L-1, scanning electron microscopy (SEM) showed a roughened surface of struvite crystal, and this was combined with X-ray absorption near edge structure (XANES) data that indicated a stack of Ni-OH and Ni-PO4 on struvite surface. At Ni concentrations of 10-25 mg·L-1, Ni primarily crystalized as Ni-struvite (NiNH4PO4·6H2O), as detected by QXRD. At higher Ni concentrations of 25-100 mg·L-1, the co-precipitation of amorphous Ni phosphate(s) (e.g., Ni3(PO4)2) and Ni hydroxide (e.g., Ni(OH)2) was identified by XANES. Specifically, the X-ray photoelectron spectroscopy (XPS) analysis detected the formation of amorphous Mg hydroxide(s) and phosphate(s) at Ni of 25-100 mg·L-1. The overall results revealed that Ni formed Ni-OH and Ni-PO4 on struvite surface at 0.1-1 mg·L-1, whereas Ni precipitated as separated phases (e.g. Ni-struvite, Ni hydroxide and phosphate) at 10-100 mg·L-1. The existence of Ni disturbed the crystal growth of struvite and promoted the formation of Ni-struvite, amorphous products during struvite formation.


Assuntos
Compostos de Magnésio , Eliminação de Resíduos Líquidos , Precipitação Química , Compostos de Magnésio/química , Fosfatos/análise , Fósforo/química , Estruvita/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise
15.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 33(12): 1414-1417, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-35131005

RESUMO

OBJECTIVE: To investigate the clinical characteristics of patients who develop chronic critical illness (CCI) after sepsis. METHODS: The survival patients with sepsis admitted to the department of critical medicine of Baoan Central Hospital of Shenzhen for the first time from April 2019 to October 2020 were enrolled. According to clinical outcomes, patients were divided into CCI group [intensive care unit (ICU) stay ≥ 14 days, with persistent organ dysfunction] and rapid recovery (RAP) group. The baseline characteristic on admission and clinical outcomes of patients in the two groups were collected and compared. Blood samples were collected to measure serum interleukins (IL-6, IL-10) levels and peripheral blood lymphocyte count (LYM) count were obtained from all patients after admission. The differences of above indexes on the 1st, 7th and 14th day in ICU between the two groups were compared, the 180 day cumulative survival rate of the two groups was observed. RESULTS: (1) Twenty-two septic patients developed CCI and 28 patients with RAP were included. There were no significant differences in gender and infection site between the two groups. The age, acute physiology and chronic health evaluation II (APACHE II), sequential organ failure assessment (SOFA), proportion of septic shock, mechanical ventilation time, length of ICU stay, total length of hospital stay and proportion of secondary infection of CCI patients were higher than those in RAP group [age (years old): 61.0±13.8 vs. 50.3±13.9, proportion of patients aged ≥ 65 years old: 54.5% (12/22) vs. 25.0% (7/28), APACHE II score: 20.5±4.4 vs. 14.4±4.3, SOFA score: 10 (7, 12) vs. 5 (3, 8), septic shock ratio: 40.9% (9/22) vs. 17.9% (5/28), time of mechanical ventilation (days): 18.5 (12.0, 28.0) vs. 5.0 (3.0, 7.0), length of ICU stay (days): 26 (18, 46) vs. 8 (6, 12), total length of hospital stay (days): 31 (26, 51) vs. 14 (12, 17), secondary infection ratio: 72.7% (16/22) vs. 7.1% (2/28), all P < 0.05]. (2) The IL-6 levels of CCI group were higher than that of RAP group at all time points (ng/L: 176.86±103.54 vs. 113.32±71.34 on the 1st day, 84.72±46.06 vs. 54.98±26.61 on the 7th day, 44.28±20.20 vs. 17.76±4.70 on the 14th day, all P < 0.05). On the 1st and 7th day of admission, there were no significant differences in IL-10 and LYM levels between the two groups. On the 14th day of admission, IL-10 levels in CCI group were higher than that in RAP group (ng/L: 15.09±3.61 vs. 8.92±1.98, P < 0.05), while LYM was relatively lower [×109/L: 0.62 (0.43, 1.02) vs. 1.17 (0.93, 1.71), P < 0.05]. (3) The Log-Rank test results of Kaplan-Meier survival curve showed that the 180-day cumulative survival rate of CCI group was significantly lower than that of RAP group (63.6% vs. 96.4%, Log-Rank: χ2 = 9.024, P = 0.007). CONCLUSIONS: Septic patients with advanced age, high APAHCE II score and high SOFA score are prone to secondary CCI, resulting in long hospital stay, high secondary infection rate and poor prognosis. The occurrence of CCI may be related to the continuous expression of proinflammatory mediators and subsequent immunosuppression.


Assuntos
Estado Terminal , Sepse , Idoso , Humanos , Unidades de Terapia Intensiva , Prognóstico , Curva ROC , Estudos Retrospectivos
16.
Sci Total Environ ; 757: 144064, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33316510

RESUMO

6:2 chlorinated polyfluorinated ether sulfonate (with the trade name F-53B, a substitute for PFOS) is one type of Per- and polyfluoroalkyl substances (PFASs), which is widely used as a chromium mist inhibitor in China. It has been found in environment commonly. In this study, the sorption behavior of F-53B on four kinds of nano-materials: alumina nanopowder (ANP), alumina nanowires (ANW), hydrophilic bentonite nanoclay (HBNC) and surface modified nanoclay (SMNC) were investigated. The kinetics results indicated that the sorption of F-53B on four nano-materials reached equilibrium within 2 h and the sorption process were fitted better by the pseudo-second-order kinetic model than the pseudo-first-order kinetic model. The thermodynamic study showed that the sorption of F-53B on nano-materials were exothermic and spontaneous. As the increase of temperature, the maximum sorption capacity of ANP, ANW, HBNC, SMNC increased, and reached 868.75, 91.35, 5.15, 2465.09 µg/g at 25 °C, respectively. The surface modified nanoclay (SMNC) was better than the others for removing F-53B from aquatic environment. To investigate the effects of pH and ion strength, the particle size and zeta potential of sorbents at different pH and ion strength were measured by Dynamic Light Scattering (DLS), and concluded that the sorption mechanism of F-53B on two kinds of nanoalumina mainly included electrostatic attraction and agglomeration effects, while hydrophobic interaction played an important role on the sorption of F-53B on nanoclay. This study revealed the sorption behavior and mechanism of F-53B on four kinds of nano-materials, and the results provided theoretical support for removing F-53B from electroplating wastewater with nano-materials.

17.
Sci Total Environ ; 764: 144269, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33401042

RESUMO

Struvite recovered from wastewater can be used as a slow-release fertilizer. Nevertheless, hazardous metals easily precipitated with struvite would increase the ecological risk for its agricultural use. In this study, the influence of individual and coexistence of Cu and Zn on the precipitation of struvite was investigated. The loading of Cu and/or Zn in precipitates increased with the increase of initial metal concentrations (0.1-100 mg/L). Quantitative X-ray diffraction (QXRD) analysis revealed that the increase of Cu and/or Zn level in reaction solution disturbed crystal growth of struvite and promoted the formation of amorphous phase(s). Scanning electron microscopy (SEM) revealed the pit formation on struvite crystal surfaces, combined with X-ray photoelectron spectroscopy (XPS) data, the results indicated a surface interaction for the formation of Cu-OH and Cu-NH3 on struvite surface at Cu of 0.1-10 mg/L. With the increase of Cu to 25-100 mg/L, the precipitation of amorphous Cu phosphate(s) was confirmed by XPS and QXRD. At Zn of 0.1-10 mg/L, the enrichment of Zn-PO4 and Zn-OH on struvite surface was observed, whereas, the precipitation of amorphous Zn hydroxide(s) was confirmed at Zn of 25-100 mg/L. At Cu and Zn co-existed solution, the decrease of Cu-PO4 and increase of Zn-PO4 suggested the competitive binding of PO4 between Cu and Zn. In addition, the formation of amorphous Mg hydroxide(s) and phosphate(s) was detected regardless of the addition of Cu in solutions. The overall results revealed that the existence of Cu and Zn during struvite formation can greatly affect its content by formation of different metal-containing products.

18.
Chemosphere ; 283: 131168, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34182635

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are a class of artificial compounds comprised of a perfluoroalkyl main chain and a terminal functional group. With them being applied in a wide range of applications, PFASs have drawn increasing regulatory attention and research interests on their reductions and treatments due to their harmful effects on environment and human beings. Among numerous studies, chemical treatments (e.g., photochemical, electrochemical, and thermal technologies) have been proved to be important methods to degradation PFASs. However, the pathways and mechanisms for the degradation of PFASs through these chemical methods still have not been well documented. This article therefore provides a comprehensive review on the degradation mechanisms of two important PFASs (perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS)) with photochemical, electrochemical and thermal methods. Different decomposition mechanisms of PFOA and PFOS are reviewed and discussed. Overall, the degradation pathways of PFASs are associated closely with their head groups and chain lengths, and H/F exchange and chain shortening were found to be predominant degradation mechanisms. The clear study on the degradation mechanisms of PFOA and PFOS should be very useful for the complete degradation or mineralization of PFASs in the future.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Caprilatos , Humanos
19.
Environ Pollut ; 281: 117025, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33813193

RESUMO

Although the occurrence and distribution of various chemicals on microplastics (MPs) has been widely studied, little was known about the concentrations of poly- and perfluoroalkyl substances (PFASs) on MPs. In this study, MPs from eight rivers draining into Pearl River Estuary (PRE) region were collected and analyzed. Higher concentrations of PFASs on MPs (105-9.07 × 103 ng g-1) were found in the drain outlets receiving wastewater from most urbanized cities with large population densities. On the other hand, lower concentrations of PFASs on MPs (10.3-227.8 ng g-1) were found in the drain outlets receiving wastewater mostly from agricultural and forested areas. Specially, 8:2 disubstituted polyfluoroalkyl phosphates (8:2 diPAP) was detected with the highest frequency, in 92.5% of the samples. Furthermore, a positive Spearman correlation was found between 6:2 disubstituted polyfluoroalkyl phosphates (6:2 diPAP) and perfluorotetradecanoic acid (PFTeDA) (rs = 0.621, p = 0.012), indicating they might share similar sources. PFASs on MPs were found to vary significantly with different seasons. Higher concentrations of PFASs on MPs were found in dry seasons, while lower concentrations were observed in wet seasons. The results of this study should be important for the understanding of PFAS occurrence and distribution on MPs and the partitioning mechanism of PFASs on MPs in estuary systems.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , China , Monitoramento Ambiental , Estuários , Fluorocarbonos/análise , Microplásticos , Plásticos , Rios , Poluentes Químicos da Água/análise
20.
Environ Sci Pollut Res Int ; 27(10): 10404-10414, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31939020

RESUMO

This study investigated crystallization mechanisms for the formation of lead aluminosilicate by sintering lead stabilization with kaolin-based precursors. PbAl2Si2O8 was found to be the only stable lead aluminosilicate in low-PbO system and demonstrates its highly intrinsic resistance to acid attack in leaching test. A three-stage PbAl2Si2O8 formation mechanism was supported by the results of the changing temperature in the system. Amorphization of sintered products was observed in both PbO/kaolinite and PbO/mullite systems at 600-700°C. When the temperature was increased to 750-900°C, the crystallochemical formation of lead aluminosilicates (i.e., Pb4Al4Si3O16, Pb6Al6Si2O21, and PbAl2Si2O8) was observed. Pb4Al4Si3O16 and Pb6Al6Si2O21 were found to be the intermediate phases at 700-900°C. Finally, PbAl2Si2O8 was found to be the only crystallite phase to host Pb at above 950°C. A maximum of 80% and 96.7% Pb can be incorporated into PbAl2Si2O8 in PbO/kaolinite and PbO/mullite systems, respectively, but the final products exhibited different microstructures. To reduce environmental hazard of lead, this strategy demonstrated a preferred mechanism of immobilizing lead into PbAl2Si2O8 structure via kaolin-based precursors.


Assuntos
Silicatos de Alumínio , Chumbo , Cerâmica , Caulim
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA