Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33531347

RESUMO

Cell-cell adhesions are often subjected to mechanical strains of different rates and magnitudes in normal tissue function. However, the rate-dependent mechanical behavior of individual cell-cell adhesions has not been fully characterized due to the lack of proper experimental techniques and therefore remains elusive. This is particularly true under large strain conditions, which may potentially lead to cell-cell adhesion dissociation and ultimately tissue fracture. In this study, we designed and fabricated a single-cell adhesion micro tensile tester (SCAµTT) using two-photon polymerization and performed displacement-controlled tensile tests of individual pairs of adherent epithelial cells with a mature cell-cell adhesion. Straining the cytoskeleton-cell adhesion complex system reveals a passive shear-thinning viscoelastic behavior and a rate-dependent active stress-relaxation mechanism mediated by cytoskeleton growth. Under low strain rates, stress relaxation mediated by the cytoskeleton can effectively relax junctional stress buildup and prevent adhesion bond rupture. Cadherin bond dissociation also exhibits rate-dependent strengthening, in which increased strain rate results in elevated stress levels at which cadherin bonds fail. This bond dissociation becomes a synchronized catastrophic event that leads to junction fracture at high strain rates. Even at high strain rates, a single cell-cell junction displays a remarkable tensile strength to sustain a strain as much as 200% before complete junction rupture. Collectively, the platform and the biophysical understandings in this study are expected to build a foundation for the mechanistic investigation of the adaptive viscoelasticity of the cell-cell junction.


Assuntos
Junções Intercelulares/metabolismo , Estresse Mecânico , Caderinas/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Elasticidade , Humanos , Junções Intercelulares/química , Viscosidade
2.
Environ Sci Technol ; 57(26): 9782-9792, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37343248

RESUMO

This study investigated the release of microplastics and nanoplastics from plastic containers and reusable food pouches under different usage scenarios, using DI water and 3% acetic acid as food simulants for aqueous foods and acidic foods. The results indicated that microwave heating caused the highest release of microplastics and nanoplastics into food compared to other usage scenarios, such as refrigeration or room-temperature storage. It was found that some containers could release as many as 4.22 million microplastic and 2.11 billion nanoplastic particles from only one square centimeter of plastic area within 3 min of microwave heating. Refrigeration and room-temperature storage for over six months can also release millions to billions of microplastics and nanoplastics. Additionally, the polyethylene-based food pouch released more particles than polypropylene-based plastic containers. Exposure modeling results suggested that the highest estimated daily intake was 20.3 ng/kg·day for infants drinking microwaved water and 22.1 ng/kg·day for toddlers consuming microwaved dairy products from polypropylene containers. Furthermore, an in vitro study conducted to assess the cell viability showed that the extracted microplastics and nanoplastics released from the plastic container can cause the death of 76.70 and 77.18% of human embryonic kidney cells (HEK293T) at 1000 µg/mL concentration after exposure of 48 and 72 h, respectively.


Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Microplásticos , Polipropilenos , Células HEK293 , Poluentes Químicos da Água/análise , Água
3.
FASEB J ; 35(12): e22066, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34822203

RESUMO

Rotator cuff tendon injuries often occur at the tendon-to-bone interface (i.e., enthesis) area, with a high prevalence for the elderly population, but the underlying reason for this phenomenon is still unknown. The objective of this study is to identify the histological, molecular, and biomechanical alterations of the rotator cuff enthesis with maturation and aging in a mouse model. Four different age groups of mice (newborn, young, adult, and old) were studied. Striking variations of the entheses were observed between the newborn and other matured groups, with collagen content, proteoglycan deposition, collagen fiber dispersion was significantly higher in the newborn group. The compositional and histological features of young, adult, and old groups did not show significant differences, except having increased proteoglycan deposition and thinner collagen fibers at the insertion sites in the old group. Nanoindentation testing showed that the old group had a smaller compressive modulus at the insertion site when compared with other groups. However, tensile mechanical testing reported that the old group demonstrated a significantly higher failure stress when compared with the young and adult groups. The proteomics analysis detected dramatic differences in protein content between newborn and young groups but minor changes among young, adult, and old groups. These results demonstrated: (1) the significant alterations of the enthesis composition and structure occur from the newborn to the young time period; (2) the increased risk of rotator cuff tendon injuries in the elderly population is not solely because of old age alone in the rodent model.


Assuntos
Envelhecimento , Osso e Ossos/patologia , Proteoglicanas/metabolismo , Proteoma/metabolismo , Lesões do Manguito Rotador/patologia , Manguito Rotador/patologia , Tendões/patologia , Fatores Etários , Animais , Fenômenos Biomecânicos , Osso e Ossos/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Camundongos , Manguito Rotador/metabolismo , Lesões do Manguito Rotador/etiologia , Lesões do Manguito Rotador/metabolismo , Tendões/metabolismo , Cicatrização
4.
Opt Express ; 29(17): 27587-27599, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615172

RESUMO

Laser shockwave cleaning (LSC) has attracted growing attention due to its advantages in non-contact, site-selective nanoparticle removal on microelectronic/optical devices. However, an uncleaned blind-zone formed directly under the laser-induced plasma kernel severely affects the cleaning effect. Laser shockwave cleaning of 300 nm polystyrene latex nanoparticles on silicon wafers is fully explored to understand the blind-zone formation mechanism. The size of the uncleaned blind-zone quickly increases from 0.84 to 19.50 mm2 associated with a growing fraction of the uncleaned blind-zone area within the whole cleaned area from 0.05 to 0.93 as the plasma-substrate gap distance is increased from 0.5 to 2 mm and the laser fluence is increased from 75 to 150 J/cm2. Besides, the variation of the blind-zone size is more strongly dependent on the plasma-substrate gap distance than the laser fluence. A time-resolved analysis of the laser-induced plasma evolution shows an inseparable relationship between the blind-zone and the geometric location of the plasma kernel. Theoretical analysis of the removal force in LSC based on the rolling mode reveals that the lack of dragging force acting on the nanoparticles in the region right under the plasma kernel impedes their removal and causes the uncleaned blind-zone formation.

5.
Opt Express ; 28(2): 1197-1205, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121834

RESUMO

In this work, laser-induced breakdown spectroscopy (LIBS) of gaseous ammonia (NH3) molecules on- and off-resonant vibrational excitation was studied in open air. A wavelength-tunable, continuous wave (CW), carbon dioxide (CO2) laser tuned at a resonant absorption peak (9.219 µm) within the infrared radiation (IR) range was used to resonantly excite the vibration of the N-H wagging mode of ammonia molecules. A pulsed Nd:YAG laser (1064 nm, 15 ns) was used to break down the ammonia gas for plasma imaging and spectral measurements. In this study, plasmas generated with the ammonia molecules without additional CO2 laser beam irradiation and with additional CO2 laser beam irradiation with the wavelengths on- and off-resonant vibrational excitation of ammonia molecules were investigated and referred as LIBS, LIBS-RE-ON and LIBS-RE-OFF, respectively. The experimental results showed that the temporal and spatial evolution as well as electron temperature and density of plasmas induced with LIBS and LIBS-RE-OFF were consistent but differed from LIBS-RE-ON. Compared with LIBS and LIBS-RE-OFF, plasmas in LIBS-RE-ON showed larger spatial expansion and enhanced emission after a delay time of 1 µs in this study, as well as significantly enhanced electron temperature by ∼ 64%. Time-resolved electron temperatures and densities showed that the emission signal enhancement in LIBS-RE-ON can be primarily attributed to the electron temperature enhancement. Signal enhancement in LIBS indicated improved detection sensitivity. This study could inspire future works on LIBS for gas detection with improved sensitivity and selectivity probably by using ultrafast/intense laser-induced molecular breakdown/ionization with resonant vibrational excitation of molecules.

6.
Opt Lett ; 45(8): 2411-2414, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287246

RESUMO

We achieved the controllable formation of laser-induced periodic surface structures (LIPSSs) on ZnO films deposited on fused silica induced by modulated temporally shaped femtosecond (fs) laser pulses (800 nm, 50 fs, 1 kHz) through the laser scanning technique. Two-dimensional (2D) high spatial frequency LIPSSs (HSFLs) with a period from 100 to 200 nm could be flexibly modulated based on the preprocessed nanostructures with appropriate fs laser irradiation conditions (fluence, scanning speed, and pulse delay). The finite-difference time-domain (FDTD) method combined with the Drude model was employed to calculate the redistributions of electric fields, which suggested the origin of HSFL formation.

7.
Opt Lett ; 45(8): 2173, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287185

RESUMO

This publisher's note contains corrections to Opt. Lett.40, 5224 (2015).OPLEDP0146-959210.1364/OL.40.005224.

8.
Nano Lett ; 19(6): 4195-4204, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31136188

RESUMO

The ability to design and enhance the nonlinear optical responses in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is both of fundamental interest and highly desirable for developing TMDC-based nonlinear optical applications, such as nonlinear convertors and optical modulators. Here, we report for the first time a strong anisotropic enhancement of optical second-harmonic generation (SHG) in monolayer molybdenum disulfide (MoS2) by integrating with one-dimensional (1D) titanium dioxide nanowires (NWs). The SHG signal from the MoS2/NW hybrid structures is over 2 orders of magnitude stronger than that in the bare monolayer MoS2. Polarized SHG measurements revealed a giant anisotropy in SHG response of the MoS2/NW hybrid. The pattern of the anisotropic SHG depends highly on the stacking angle between the nanowire direction and the MoS2 crystal orientation, which is attributed to the 1D NW-induced directional strain fields in the layered MoS2. A similar effect has also been observed in bilayer MoS2/NW hybrid structure, further proving the proposed scenario. This work provides an effective approach to selectively and directionally designing the nonlinear optical response of layered TMDCs, paving the way for developing high-performance, anisotropic nonlinear photonic nanodevices.

9.
Anal Chem ; 91(15): 9952-9961, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31266295

RESUMO

A multiscale visualization of silica colloidal particle lens array (CPLA) assisted laser ablation of copper is investigated. The distributed holes on a crater of CPLA-deposited Cu (CPLA-Cu) show a near-field effect by the silica nanoparticles (NPs), and the plasma emission signal of CPLA-Cu is 3-5 times as strong as that of Cu. Time-resolved plasma expansion, shockwave propagation, plasma plume emission, and nanoparticle distribution are observed and analyzed for ablations on both Cu and CPLA-Cu substrates. The initial expansion of plasma generated on CPLA-Cu is faster than that of pristine Cu. The shockwave of CPLA-Cu is rounder and its plasma plume is wider than those of Cu. The nanoparticle distribution shows a strong lateral collision during plume ejection for CPLA-Cu. Plasma characterization shows the increased plasma temperature is the key reason for femtosecond laser-induced breakdown spectroscopy (fs-LIBS) signal enhancement. This work demonstrates the signal enhancement effect of dielectric NPs on fs-LIBS and provides insights into hydrodynamics of the fs laser-induced plasma generated on CPLA-deposited substrate.

10.
Small ; 15(11): e1804899, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30748108

RESUMO

Laser ablation in liquid has proven to be a universal and green method to synthesize nanocrystals and fabricate functional nanostructures. This study demonstrates the superiority of femtosecond laser-mediated plasma in enhancing photoredox of metal cations for controllable fabrication of plasmonic nanostructures in liquid. Through employing upstream high energetic plasma during laser-induced microexplosions, single/three-electron photoreduction of metallic cations can readily occur without chemical reductants or capping agents. Experimental evidences demonstrate that this process exhibits higher photon utilization efficiency in yield of colloidal metal nanoparticles than direct irradiation of metallic precursors. Photogenerated hydrated electrons derived from strong ionization of silicon and water are responsible for this enhanced consequences. Furthermore, these metallic nanoparticles are accessible to self-assemble into nanoplates for silver and nanospheres for gold, favored by surface-tension gradients between laser irradiated and unirradiated regions. These metallic nanostructures exhibit excellent surface-enhanced Raman spectroscopy performance in trace detection of Rhodamine 6G (R6G), 4-mercaptobenzoic acid (4-MBA), and mercapto-5-nitrobenzimidazole molecules with high sensitivity (down to 10-12 mol L-1 , 30 × 10-15 m for R6G), good reproducibility (relative standard deviation < 7%), and good dual-analyte detection ability with mixture ratios of R6G to 4-MBA ranging from 20 to 0.025. The conceptual importance of this plasma-enhanced-photochemical process may provide exciting opportunities in photochemical reactions, plasmofluidics, and material synthesis.

11.
Opt Express ; 27(7): 10050-10057, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045151

RESUMO

Laser-induced plasma evolution in fused silica through multipulse laser ablation was studied using pump-probe technology. Filament splitting was observed in the early stage of plasma evolution (before ~300 fs). This phenomenon can be attributed to competition between laser divergent propagation induced by a pre-pulse-induced crater and the nonlinear self-focusing effect. This effect was validated through simulation results. With the increasing pulse number, the appearance of filament peak electron density was postponed. Furthermore, a second peak in the filament and peak position separation were observed because of an optical path difference between the lasers propagating from the crater center and edge. The experimental results revealed the influence of a prepulse-induced structure on the energy distribution of subsequent pulses, which are essential for understanding the mechanism of laser-material interactions, particularly in ultrafast multiple-pulse laser ablation.

12.
Opt Express ; 27(7): 9782-9793, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045127

RESUMO

Laser-induced periodic surface structures (LIPSS) provide an easy and cost-effective means of fabricating gratings and have been widely studied in recent decades. To overcome the challenge of orientation controllability, we developed a feasible and efficient method for manipulating the orientation of LIPSS in real time. Specifically, we used orthogonally polarized and equal-energy femtosecond laser (50 fs, 800 nm) double-pulse trains with time delay about 1ps, total peak laser fluence about 1.0 J/cm2, laser repetition frequency at 100 Hz and scanning speed at 150 µm/s to manipulate the LIPSS orientation on silicon surfaces perpendicular to the scanning direction, regardless of the scanning paths. The underlying mechanism is attributed to the periodic energy deposition along the direction of surface plasmon polaritons (SPPs), which can be controlled oriented along the scanning direction in orthogonally polarized femtosecond laser double-pulse trains surface scan processing. An application of structural colors presents the functionality of our method.

13.
Opt Express ; 27(10): 15091-15099, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31163946

RESUMO

Heavy metal pollution is one of the main problems in water pollution, which is harmful to humans. Surface-enhanced laser-induced breakdown spectroscopy (SENLIBS) has been applied to detect trace amounts of heavy metal elements in aqueous solution; however, it is still a big challenge to explore the relationship between the LIBS detection sensitivity and the substrate's physical properties. In this work, four typical substrates, zinc (Zn), magnesium alloy (Mg), nickel (Ni), and silicon (Si), were compared; and the mechanism of spectral enhancement by different substrates in SENLIBS was investigated. The results indicated that the limit of detection (LoD) of heavy metal elements on different substrates is positively proportional to the boiling of the substrate. That is mainly because a higher plasma excitation temperature and electron density are obtained, leading to more intense collision between particles. The signal enhancement is associated with the lower boiling point of the substrate (corresponding to a lower ablation threshold and higher ablation quantity from the substrate). As a result, the best LoD was 0.0011 mg/L for chromium (Cr) and 0.004 mg/L for lead (Pb) on an optimal Zn substrate, respectively. The LoDs were sufficiently low to meet the drinking water sanitation standard. These results showed that the detection sensitivity of heavy metal elements in aqueous solution can be improved by choosing a substrate with a lower boiling point in SENLIBS.

14.
Opt Express ; 27(4): 4261-4270, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876043

RESUMO

Self-absorption seriously affects the accuracy and stability of quantitative analysis in laser-induced breakdown spectroscopy (LIBS). To reduce the effect of self-absorption, we investigated the temporal evolution of the self-absorption effect by establishing exponential calibration curves. Meanwhile, the temporal evolution mechanism of the self-absorption effect was also investigated. The results indicated that self-absorption was weak at the early stage of plasma expansion. For determination of manganese (Mn) in steel, as an example, the concentration of upper bound of linearity (Cint) was 2.000 wt. % at the early stage of plasma expansion (in a time window of 0.2-0.4 µs)-much higher than 0.363 wt. % at a traditional optimization time window (2-3 µs). The accuracy and stability of quantitative analysis at the time window of 0.2-0.4 µs was also much better than at the time window of 2-3 µs. This work provides a simple method for improving quantitative analysis performance and avoiding the self-absorption effect in LIBS.

16.
Appl Opt ; 58(8): 1895-1899, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30874053

RESUMO

Laser-induced breakdown spectroscopy (LIBS) assisted with laser-induced fluorescence (LIF) was introduced to detect trace aluminum in steatite ceramics in this work. The mechanism and transition process of laser-induced aluminum atomic fluorescence in laser-induced plasma was described and discussed. Selective enhancement of LIF and temporal synchronicity between radiation laser and fluorescence were studied. The influences of ablation laser energy, power density of the radiation laser, and interpulse delay were experimentally investigated. The results showed that 60 mJ in ablation laser energy and 4 µs in interpulse delay were the optimal choice for fluorescent intensity. The fluorescence was increased to the saturation level over 4 MW/cm2. Spectral stability improvement of LIBS-LIF was also discovered in this work. The results proved that LIBS-LIF is a feasible and effective modification of LIBS for ceramics analysis.

17.
Nanomedicine ; 16: 88-96, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30550805

RESUMO

Pancreatic cancer is a highly lethal malignancy. Lack of early diagnostic markers makes timely detection of pancreatic cancer a highly challenging endeavor. Exosomes have emerged as information-rich cancer specific biomarkers. However, characterization of tumor-specific exosomes has been challenging. This study investigated the proof of principle that exosomes could be used for the detection of pancreatic cancer. Label-free analysis of exosomes purified from normal and pancreatic cancer cell lines was performed using surface enhanced Raman Spectroscopy (SERS) and principal component differential function analysis (PC-DFA), to identify tumor-specific spectral signatures. This method differentiated exosomes originating from pancreatic cancer or normal pancreatic epithelial cell lines with 90% accuracy. The cell line trained PC-DFA algorithm was next applied to SERS spectra of serum-purified exosomes. This method exhibited up to 87% and 90% predictive accuracy for HC and EPC individual samples, respectively. Overall, our study identified utility of SERS spectral signature for deciphering exosomal surface signature.


Assuntos
Detecção Precoce de Câncer/métodos , Exossomos/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Análise Espectral Raman/métodos , Algoritmos , Biomarcadores Tumorais/análise , Humanos , Microscopia Eletrônica de Transmissão , Análise de Componente Principal
18.
Nano Lett ; 18(3): 2021-2032, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29351373

RESUMO

Single-crystal transition metal dichalcogenides (TMDs) and TMD-based heterojunctions have recently attracted significant research and industrial interest owing to their intriguing optical and electrical properties. However, the lack of a simple, low-cost, environmentally friendly, synthetic method and a poor understanding of the growth mechanism post a huge challenge to implementing TMDs in practical applications. In this work, we developed a novel approach for direct formation of high-quality, monolayer and few-layer MoS2 single crystal domains via a single-step rapid thermal processing of a sandwiched reactor with sulfur and molybdenum (Mo) film in a confined reaction space. An all-solid-phase growth mechanism was proposed and experimentally/theoretically evidenced by analyzing the surface potential and morphology mapping. Compared with the conventional chemical vapor deposition approaches, our method involves no complicated gas-phase reactant transfer or reactions and requires very small amount of solid precursors [e.g., Mo (∼3 µg)], no carrier gas, no pretreatment of the precursor, no complex equipment design, thereby facilitating a simple, low-cost, and environmentally friendly growth. Moreover, we examined the symmetry, defects, and stacking phase in as-grown MoS2 samples using simultaneous second-harmonic-/sum-frequency-generation (SHG/SFG) imaging. For the first time, we observed that the SFG (peak intensity/position) polarization can be used as a sensitive probe to identify the orientation of TMDs' crystallographic axes. Furthermore, we fabricated ferroelectric programmable Schottky junction devices via local domain patterning using the as-grown, single-crystal monolayer MoS2, revealing their great potential in logic and optoelectronic applications. Our strategy thus provides a simple, low-cost, and scalable path toward a wide variety of TMD single crystal growth and novel functional device design.

19.
Anal Chem ; 90(11): 7080-7085, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29750503

RESUMO

To detect available heavy metals in soil using laser-induced breakdown spectroscopy (LIBS) and improve its poor detection sensitivity, a simple and low cost sample pretreatment method named solid-liquid-solid transformation was proposed. By this method, available heavy metals were extracted from soil through ultrasonic vibration and centrifuging and then deposited on a glass slide. Utilization of this solid-liquid-solid transformation method, available Cd and Pb elements in soil were detected successfully. The results show that the regression coefficients of calibration curves for soil analyses reach to more than 0.98. The limits of detection could reach to 0.067 and 0.94 ppm for available Cd and Pb elements in soil under optimized conditions, respectively, which are much better than those obtained by conventional LIBS.


Assuntos
Cádmio/análise , Lasers , Chumbo/análise , Solo/química , Calibragem , Transição de Fase , Análise Espectral
20.
Opt Express ; 26(17): 21960-21968, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30130897

RESUMO

Bessel beams are advantageous in high aspect-ratio microhole drilling because of their immunity to diffraction. However, conventional methods of generating Bessel beams result in poor adjustability of the nondiffraction length. In this study, we theoretically describe and experimentally demonstrate the generation of Bessel-like beams (BLBs) with an adjustable nondiffraction length by using a phase-only spatial light modulator. In this method, nondiffraction lengths varying from 10 to 35 mm can be achieved by changing the designed phase profile (curvature). High-quality, high aspect ratio (560:1) and length-adjustable microholes can be drilled by spatially shaping a femtosecond laser beam.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA