Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(11): 4524-4529, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34037401

RESUMO

A huge amount of thermal energy is available close to material surfaces in radiative and nonradiative states, which can be useful for matter characterization or energy harvesting. Even though a full class of novel nanoengineered devices has been predicted over the last two decades for exploiting near-field thermal photons, efficient near-field thermophotovoltaic conversion could not be achieved experimentally until now. Here, we realize a proof of principle by using a micrometer-sized indium antimonide photovoltaic cell cooled at 77 K and approached at nanometer distances from a hot (∼730 K) graphite microsphere emitter. We demonstrate a near-field power conversion efficiency of the cell above 14% and unprecedented electrical power density outputs (0.75 W cm-2), which are orders of magnitude larger than all previous attempts. These results highlight that near-field thermophotovoltaic converters are now competing with other thermal-to-electrical conversion devices and also pave the way for efficient photoelectric detection of near-field thermal photons.

2.
Opt Express ; 27(4): A11-A24, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876001

RESUMO

Simulations of near-field thermophotovoltaic devices predict promising performance, but experimental observations remain challenging. Having the lowest bandgap among III-V semiconductors, indium antimonide (InSb) is an attractive choice for the photovoltaic cell, provided it is cooled to a low temperature, typically around 77 K. Here, by taking into account fabrication and operating constraints, radiation transfer and low-injection charge transport simulations are made to find the optimum architecture for the photovoltaic cell. Appropriate optical and electrical properties of indium antimonide are used. In particular, impact of the Moss-Burstein effects on the interband absorption coefficient of n-type degenerate layers, and of parasitic sub-bandgap absorption by the free carriers and phonons are accounted for. Micron-sized cells are required to minimize the huge issue of the lateral series resistance losses. The proposed methodology is presumably relevant for making realistic designs of near-field thermophotovoltaic devices based on low-bandgap III-V semiconductors.

3.
Nanoscale Horiz ; 6(3): 201-208, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33533775

RESUMO

Energy transport theories are being revisited at the nanoscale, as macroscopic laws known for a century are broken at dimensions smaller than those associated with energy carriers. For thermal radiation, where the typical dimension is provided by Wien's wavelength, Planck's law and associated concepts describing surface-to-surface radiative transfer have to be replaced by a full electromagnetic framework capturing near-field radiative heat transfer (photon tunnelling between close bodies), interference effects and sub-wavelength thermal emission (emitting body of small size). It is only during the last decade that nanotechnology has allowed for many experimental verifications - with a recent boom - of the large increase of radiative heat transfer at the nanoscale. In this minireview, we highlight the parameter space that has been investigated until now, showing that it is limited in terms of inter-body distance, temperature and object size, and provide clues about possible thermal-energy harvesting, sensing and management applications. We also provide an outlook on open topics, underlining some difficulties in applying single-wavelength approaches to broadband thermal emitters while acknowledging the promise of thermal nanophotonics and observing that molecular/chemical viewpoints have been hardly addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA