Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Acoust Soc Am ; 143(4): 2172, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29716277

RESUMO

Quantitative ultrasound (QUS) can be used to estimate acoustic properties of tissue microstructure. In one approach to QUS, the backscatter coefficient (BSC) is utilized to quantify and classify tissue state. From the BSC, parametric models can be constructed to relate the frequency-dependent BSC to geometrical properties of the underlying tissue. However, most of these parametric models are based on analytic expressions (e.g., Gaussian function) and not on actual tissue morphology. Impedance map analysis has been proposed to help identify sources of ultrasonic scattering in tissues and to develop improved models of scattering. Previously, two-dimensional impedance maps (2DZMs) were demonstrated to provide tissue models of three-dimensional (3D) structures for sparse scattering media. In the current study, 2DZMs analysis of dense scatterer media combining the structure function with impedance map analysis was studied through a series of simulations. The simulation analysis demonstrated that the correlation coefficient and power spectrum could be estimated for a dense collection of spheres using 2DZMs. The current finding implies that 2DZMs can capture information about the 3D spatial positions of scatterers in addition to information about the size and shape of the scatterers for a dense scattering media, which is expected to be encountered in many tissues.


Assuntos
Simulação por Computador , Impedância Elétrica , Modelos Teóricos , Espalhamento de Radiação , Distribuição Normal , Embalagem de Produtos
2.
J Acoust Soc Am ; 139(4): 1557, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27106304

RESUMO

Impedance maps (ZMs) have been proposed as a tool for modeling acoustic properties of tissue microstructure. Three-dimensional (3D) ZMs are constructed from a series of adjacent histological tissue slides that have been stained to emphasize acoustic impedance structures. The power spectrum of a 3DZM can be related to the ultrasound backscatter coefficient, which can be further reduced to a form factor. The goal of this study is to demonstrate the ability to estimate form factors using two-dimensional (2D) ZMs instead of 3DZMs, which have reduced computational and financial cost. The proposed method exploits the properties of isotropic media to estimate the correlation coefficient from slices before estimating the 3D volume power spectrum. Simulated sparse collections of objects were used to study the method by comparing the results obtained using 2DZMs to those predicted by theory. 2DZM analysis was conducted on normal rabbit liver histology and compared to 3DZM analysis of the same histology. The mean percent error between effective scatterer diameter estimates from 2DZMs and 3DZMs of rabbit liver histology was <10% when using three 2DZMs. The results suggest that 2DZMs are a feasible alternative to 3DZMs when estimating form factors for sparse collections of objects.


Assuntos
Fígado/diagnóstico por imagem , Ondas Ultrassônicas , Ultrassom/métodos , Ultrassonografia/métodos , Animais , Simulação por Computador , Estudos de Viabilidade , Modelos Teóricos , Análise Numérica Assistida por Computador , Coelhos , Reprodutibilidade dos Testes , Espalhamento de Radiação
3.
Ultrason Imaging ; 37(2): 117-34, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25189857

RESUMO

When using the backscatter coefficient (BSC) to estimate quantitative ultrasound parameters such as the effective scatterer diameter (ESD) and the effective acoustic concentration (EAC), it is necessary to assume that the interrogated medium contains diffuse scatterers. Structures that invalidate this assumption can affect the estimated BSC parameters in terms of increased bias and variance and decrease performance when classifying disease. In this work, a method was developed to mitigate the effects of echoes from structures that invalidate the assumption of diffuse scattering, while preserving as much signal as possible for obtaining diffuse scatterer property estimates. Backscattered signal sections that contained nondiffuse signals were identified and a windowing technique was used to provide BSC estimates for diffuse echoes only. Experiments from physical phantoms were used to evaluate the effectiveness of the proposed BSC estimation methods. Tradeoffs associated with effective mitigation of specular scatterers and bias and variance introduced into the estimates were quantified. Analysis of the results suggested that discrete prolate spheroidal (PR) tapers with gaps provided the best performance for minimizing BSC error. Specifically, the mean square error for BSC between measured and theoretical had an average value of approximately 1.0 and 0.2 when using a Hanning taper and PR taper respectively, with six gaps. The BSC error due to amplitude bias was smallest for PR (Nω = 1) tapers. The BSC error due to shape bias was smallest for PR (Nω = 4) tapers. These results suggest using different taper types for estimating ESD versus EAC.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Imagens de Fantasmas
4.
J Acoust Soc Am ; 130(4): 2203-11, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21973375

RESUMO

Quantitative ultrasound (QUS) is an imaging technique that can be used to quantify tissue microstructure giving rise to scattered ultrasound. Other ultrasonic properties, e.g., sound speed and attenuation, of tissues have been estimated versus temperature elevation and found to have a dependence with temperature. Therefore, it is hypothesized that QUS parameters may be sensitive to changes in tissue microstructure due to temperature elevation. Ultrasonic backscatter experiments were performed on tissue-mimicking phantoms and freshly excised rabbit and beef liver samples. The phantoms were made of agar and contained either mouse mammary carcinoma cells (4T1) or chinese hamster ovary cells (CHO) as scatterers. All scatterers were uniformly distributed spatially at random throughout the phantoms. All the samples were scanned using a 20-MHz single-element f/3 transducer. Quantitative ultrasound parameters were estimated from the samples versus increases in temperature from 37 °C to 50 °C in 1 °C increments. Two QUS parameters were estimated from the backscatter coefficient [effective scatterer diameter (ESD) and effective acoustic concentration (EAC)] using a spherical Gaussian scattering model. Significant increases in ESD and decreases in EAC of 20%-40% were observed in the samples over the range of temperatures examined. The results of this study indicate that QUS parameters are sensitive to changes in temperature.


Assuntos
Fígado/diagnóstico por imagem , Temperatura , Ultrassom , Ágar , Animais , Células CHO , Bovinos , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Feminino , Masculino , Camundongos , Modelos Biológicos , Movimento (Física) , Imagens de Fantasmas , Coelhos , Espalhamento de Radiação , Som , Fatores de Tempo , Transdutores , Ultrassom/instrumentação , Ultrassonografia
5.
Artigo em Inglês | MEDLINE | ID: mdl-32746184

RESUMO

We study training deep neural network (DNN) frequency-domain beamformers using simulated and phantom anechoic cysts and compare to training with simulated point target responses. Using simulation, physical phantom, and in vivo scans, we find that training DNN beamformers using anechoic cysts provided comparable or improved image quality compared with training DNN beamformers using simulated point targets. The proposed method could also be adapted to generate training data from in vivo scans. Finally, we evaluated the robustness of DNN beamforming to common sources of image degradation, including gross sound speed errors, phase aberration, and reverberation. We found that DNN beamformers maintained their ability to improve image quality even in the presence of the studied sources of image degradation. Overall, the results show the potential of using DNN beamforming to improve ultrasound image quality.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Ultrassonografia/métodos , Adulto , Algoritmos , Cistos/diagnóstico por imagem , Humanos , Fígado/diagnóstico por imagem , Masculino , Imagens de Fantasmas
6.
IEEE Trans Med Imaging ; 37(9): 2010-2021, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29994441

RESUMO

We investigate the use of deep neural networks (DNNs) for suppressing off-axis scattering in ultrasound channel data. Our implementation operates in the frequency domain via the short-time Fourier transform. The inputs to the DNN consisted of the separated real and imaginary components (i.e. in-phase and quadrature components) observed across the aperture of the array, at a single frequency and for a single depth. Different networks were trained for different frequencies. The output had the same structure as the input and the real and imaginary components were combined as complex data before an inverse short-time Fourier transform was used to reconstruct channel data. Using simulation, physical phantom experiment, and in vivo scans from a human liver, we compared this DNN approach to standard delay-and-sum (DAS) beamforming and an adaptive imaging technique that uses the coherence factor. For a simulated point target, the side lobes when using the DNN approach were about 60 dB below those of standard DAS. For a simulated anechoic cyst, the DNN approach improved contrast ratio (CR) and contrast-to-noise (CNR) ratio by 8.8 dB and 0.3 dB, respectively, compared with DAS. For an anechoic cyst in a physical phantom, the DNN approach improved CR and CNR by 17.1 dB and 0.7 dB, respectively. For two in vivo scans, the DNN approach improved CR and CNR by 13.8 dB and 9.7 dB, respectively. We also explored methods for examining how the networks in this paper function.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia/métodos , Adulto , Análise de Fourier , Humanos , Fígado/diagnóstico por imagem , Masculino , Imagens de Fantasmas
7.
Artigo em Inglês | MEDLINE | ID: mdl-22622974

RESUMO

Quantitative ultrasound (QUS) techniques that parameterize the backscattered power spectrum have demonstrated significant promise for ultrasonic tissue characterization. Some QUS parameters, such as the effective scatterer diameter (ESD), require the assumption that the examined medium contains uniform diffuse scatterers. Structures that invalidate this assumption can significantly affect the estimated QUS parameters and decrease performance when classifying disease. In this work, a method was developed to reduce the effects of echoes that invalidate the assumption of diffuse scattering. To accomplish this task, backscattered signal sections containing non-diffuse echoes were identified and removed from the QUS analysis. Parameters estimated from the generalized spectrum (GS) and the Rayleigh SNR parameter were compared for detecting data blocks with non-diffuse echoes. Simulations and experiments were used to evaluate the effectiveness of the method. Experiments consisted of estimating QUS parameters from spontaneous fibroadenomas in rats and from beef liver samples. Results indicated that the method was able to significantly reduce or eliminate the effects of nondiffuse echoes that might exist in the backscattered signal. For example, the average reduction in the relative standard deviation of ESD estimates from simulation, rat fibroadenomas, and beef liver samples were 13%, 30%, and 51%, respectively. The Rayleigh SNR parameter performed best at detecting nondiffuse echoes for the purpose of removing and reducing ESD bias and variance. The method provides a means to improve the diagnostic capabilities of QUS techniques by allowing separate analysis of diffuse and non-diffuse scatterers.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Animais , Bovinos , Análise por Conglomerados , Simulação por Computador , Feminino , Fibroadenoma/diagnóstico por imagem , Fígado/diagnóstico por imagem , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Imagens de Fantasmas , Ratos , Espalhamento de Radiação , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA