Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Radiology ; 298(2): E81-E87, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32870139

RESUMO

Background The role and performance of chest CT in the diagnosis of the coronavirus disease 2019 (COVID-19) pandemic remains under active investigation. Purpose To evaluate the French national experience using chest CT for COVID-19, results of chest CT and reverse transcription polymerase chain reaction (RT-PCR) assays were compared together and with the final discharge diagnosis used as the reference standard. Materials and Methods A structured CT scan survey (NCT04339686) was sent to 26 hospital radiology departments in France between March 2, 2020, and April 24, 2020. These dates correspond to the peak of the national COVID-19 epidemic. Radiology departments were selected to reflect the estimated geographic prevalence heterogeneities of the epidemic. All symptomatic patients suspected of having COVID-19 pneumonia who underwent both initial chest CT and at least one RT-PCR test within 48 hours were included. The final discharge diagnosis, based on multiparametric items, was recorded. Data for each center were prospectively collected and gathered each week. Test efficacy was determined by using the Mann-Whitney test, Student t test, χ2 test, and Pearson correlation coefficient. P < .05 indicated a significant difference. Results Twenty-six of 26 hospital radiology departments responded to the survey, with 7500 patients entered; 2652 did not have RT-PCR test results or had unknown or excess delay between the RT-PCR test and CT. After exclusions, 4824 patients (mean age, 64 years ± 19 [standard deviation], 2669 male) were included. With final diagnosis as the reference, 2564 of the 4824 patients had COVID-19 (53%). Sensitivity, specificity, negative predictive value, and positive predictive value of chest CT in the diagnosis of COVID-19 were 2319 of 2564 (90%; 95% CI: 89, 91), 2056 of 2260 (91%; 95% CI: 91, 92), 2056 of 2300 (89%; 95% CI: 87, 90), and 2319 of 2524 (92%; 95% CI: 91, 93), respectively. There was no significant difference for chest CT efficacy among the 26 geographically separate sites, each with varying amounts of disease prevalence. Conclusion Use of chest CT for the initial diagnosis and triage of patients suspected of having coronavirus disease 2019 was successful. © RSNA, 2021 Online supplemental material is available for this article.


Assuntos
COVID-19/diagnóstico por imagem , COVID-19/epidemiologia , Radiografia Torácica/métodos , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , França/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , SARS-CoV-2 , Sensibilidade e Especificidade , Adulto Jovem
2.
Kidney Int ; 97(5): 920-933, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32173037

RESUMO

Hypercalciuria is a common feature during metabolic acidosis and associates to nephrolithiasis and nephrocalcinosis. The mechanisms sensing acidosis and inducing increased urinary calcium excretion are still unknown. Here we tested whether mice deficient for proton-activated Ovarian cancer G-protein coupled receptor 1 (OGR1 or Gpr68) have reduced urinary excretion of calcium during chronic metabolic acidosis. In the kidney, OGR1 mRNA was found in cells of the glomerulus, proximal tubule, and interstitium including endothelial cells. Wild type (OGR1+/+) and OGR1 knockout (OGR1-/-) mice were given standard chow without (control) or loaded with ammonium chloride for one or seven days to induce acute or chronic metabolic acidosis, respectively. No differences in responding to the acid load were observed in the knockout mice, except for higher plasma bicarbonate after one day. Bone mineral density, resorption activity of osteoclasts, and urinary deoxypyridinoline were similar between genotypes. During metabolic acidosis the expression levels of key proteins involved in calcium reabsorption, i.e. the sodium/proton exchanger (NHE3), the epithelial calcium-selective channel TRPV5, and the vitamin D-dependent calcium binding protein calbindin-D28k were all higher in the knockout mice compared to wild type mice. This is consistent with the previous demonstration that OGR1 reduces NHE3 activity in proximal tubules of mice. Wild-type mice displayed a non-linear positive association between urinary proton and calcium excretion which was lost in the knockout mice. Thus, OGR1 is a pH sensor involved in the hypercalciuria of metabolic acidosis by controlling NHE3 activity in the proximal tubule. Hence, novel drugs modulating OGR1 activity may improve renal calcium handling.


Assuntos
Acidose , Cálcio , Receptores Acoplados a Proteínas G , Acidose/genética , Animais , Cálcio/metabolismo , Células Endoteliais/metabolismo , Proteínas de Ligação ao GTP , Túbulos Renais Proximais/metabolismo , Camundongos , Camundongos Knockout , Prótons , Receptores Acoplados a Proteínas G/genética , Trocador 3 de Sódio-Hidrogênio
3.
J Stroke Cerebrovasc Dis ; 29(9): 105095, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32807489
4.
Bioorg Med Chem ; 25(16): 4512-4525, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28689977

RESUMO

GPR4, a G-protein coupled receptor, functions as a proton sensor being activated by extracellular acidic pH and has been implicated in playing a key role in acidosis associated with a variety of inflammatory conditions. An orally active GPR4 antagonist 39c was developed, starting from a high throughput screening hit 1. The compound shows potent cellular activity and is efficacious in animal models of angiogenesis, inflammation and pain.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Desenho de Fármacos , Inflamação/tratamento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Artrite/tratamento farmacológico , Artrite/metabolismo , Células COS , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Células HeLa , Humanos , Inflamação/metabolismo , Camundongos , Estrutura Molecular , Dor/tratamento farmacológico , Dor/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
5.
J Physiol ; 594(6): 1529-51, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26748771

RESUMO

We discuss recent evidence which suggests that the principal central respiratory chemoreceptors are located within the retrotrapezoid nucleus (RTN) and that RTN neurons are directly sensitive to [H(+) ]. RTN neurons are glutamatergic. In vitro, their activation by [H(+) ] requires expression of a proton-activated G protein-coupled receptor (GPR4) and a proton-modulated potassium channel (TASK-2) whose transcripts are undetectable in astrocytes and the rest of the lower brainstem respiratory network. The pH response of RTN neurons is modulated by surrounding astrocytes but genetic deletion of RTN neurons or deletion of both GPR4 and TASK-2 virtually eliminates the central respiratory chemoreflex. Thus, although this reflex is regulated by innumerable brain pathways, it seems to operate predominantly by modulating the discharge rate of RTN neurons, and the activation of RTN neurons by hypercapnia may ultimately derive from their intrinsic pH sensitivity. RTN neurons increase lung ventilation by stimulating multiple aspects of breathing simultaneously. They stimulate breathing about equally during quiet wake and non-rapid eye movement (REM) sleep, and to a lesser degree during REM sleep. The activity of RTN neurons is regulated by inhibitory feedback and by excitatory inputs, notably from the carotid bodies. The latter input operates during normo- or hypercapnia but fails to activate RTN neurons under hypocapnic conditions. RTN inhibition probably limits the degree of hyperventilation produced by hypocapnic hypoxia. RTN neurons are also activated by inputs from serotonergic neurons and hypothalamic neurons. The absence of RTN neurons probably underlies the sleep apnoea and lack of chemoreflex that characterize congenital central hypoventilation syndrome.


Assuntos
Células Quimiorreceptoras/metabolismo , Bulbo/fisiologia , Prótons , Respiração , Animais , Humanos , Bulbo/citologia , Bulbo/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Reflexo , Sono REM
6.
Chembiochem ; 17(22): 2123-2128, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27595549

RESUMO

Driving macrophage (Mϕ) polarization into the M2 phenotype provides potential against inflammatory diseases. Interleukin-4 (IL-4) promotes polarization into the M2-Mϕ phenotype, but its systemic use is constrained by dose-limiting toxicity. Consequently, we developed IL-4-decorated surfaces aiming at sustained and localized activity. IL-4 muteins were generated by genetic code expansion; Lys42 was replaced by unnatural amino acids (uAAs). Both muteins showed cell-stimulation ability and binding affinity to IL4Rα similar to those of wt-IL-4. Copper-catalyzed (CuAAC) and copper-free strain-promoted (SPAAC) 1,3-dipolar azide-alkyne cycloadditions were used to site-selectively anchor IL-4 to agarose surfaces. These surfaces had sustained IL-4 activity, as demonstrated by TF-1 cell proliferation and M2, but not M1, polarization of M-CSF-generated human Mϕ. The approach provides a blueprint for the engineering of cytokine-activated surfaces profiled for sustained and spatially controlled activity.


Assuntos
Interleucina-4/química , Macrófagos/metabolismo , Alcinos/química , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Azidas/química , Catálise , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Dicroísmo Circular , Cobre/química , Reação de Cicloadição , Código Genético , Células HEK293 , Humanos , Interferon gama/farmacologia , Interleucina-4/genética , Interleucina-4/metabolismo , Lipopolissacarídeos/farmacologia , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Dados de Sequência Molecular , Monócitos/citologia , Mutagênese Sítio-Dirigida , Sefarose/química , Propriedades de Superfície
7.
Handb Exp Pharmacol ; 234: 309-327, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832494

RESUMO

Classic G-protein-coupled receptors (GPCRs) control multiple aspects of pulmonary physiology as demonstrated by loss-of-function experiments in mice and pharmacologic targeting of GPCRs for treatment of several pulmonary diseases. Emerging data demonstrate critical roles for members of the adhesion GPCR (aGPCR) family in pulmonary development, homeostasis, and disease. Although this field is still in its infancy, this chapter will review all available data regarding aGPCRs in pulmonary biology, with a particular focus on the aGPCR for which the most substantial data to date exist: Adgrf5.


Assuntos
Adesão Celular , Membrana Celular/metabolismo , Pneumopatias/metabolismo , Pulmão/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Pneumopatias/genética , Pneumopatias/patologia , Pneumopatias/fisiopatologia , Camundongos , Morfogênese , Domínios e Motivos de Interação entre Proteínas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Transcrição Gênica
8.
Am J Physiol Gastrointest Liver Physiol ; 309(6): G475-90, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26206859

RESUMO

The pH-sensing receptor ovarian cancer G protein-coupled receptor 1 (OGR1; GPR68) is expressed in the gut. Inflammatory bowel disease is typically associated with a decrease in local pH, which may lead to altered epithelial barrier function and subsequent gastrointestinal repair involving epithelial cell adhesion and migration. As the mechanisms underlying the response to pH changes are not well understood, we have investigated OGR1-mediated, pH-dependent signaling pathways in intestinal epithelial cells. Caco-2 cells stably overexpressing OGR1 were created and validated as tools to study OGR1 signaling. Barrier function, migration, and proliferation were measured using electric cell-substrate impedance-sensing technology. Localization of the tight junction proteins zonula occludens protein 1 and occludin and the rearrangement of cytoskeletal actin were examined by confocal microscopy. Paracellular permeability and protein and gene expression analysis using DNA microarrays were performed on filter-grown Caco-2 monolayers. We report that an acidic pH shift from pH 7.8 to 6.6 improved barrier function and stimulated reorganization of filamentous actin with prominent basal stress fiber formation. Cell migration and proliferation during in vitro wound healing were inhibited. Gene expression analysis revealed significant upregulation of genes related to cytoskeleton remodeling, cell adhesion, and growth factor signaling. We conclude that acidic extracellular pH can have a signaling function and impact the physiology of intestinal epithelial cells. The deconstruction of OGR1-dependent signaling may aid our understanding of mucosal inflammation mechanisms.


Assuntos
Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Ácidos , Actinas/metabolismo , Células CACO-2 , Cálcio/metabolismo , Impedância Elétrica , Humanos , Fosfatos de Inositol/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fosforilação , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/fisiologia , Cicatrização/genética
9.
Biochem Biophys Res Commun ; 446(3): 663-8, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24480442

RESUMO

Oxysterols such as 7 alpha, 25-dihydroxycholesterol (7α,25-OHC) are natural ligands for the Epstein-Barr virus (EBV)-induced gene 2 (EBI2, aka GPR183), a G protein-coupled receptor (GPCR) highly expressed in immune cells and required for adaptive immune responses. Activation of EBI2 by specific oxysterols leads to chemotaxis of B cells in lymphoid tissues. While the ligand gradient necessary for this critical process of the adaptive immune response is established by a stromal cells subset here we investigate the involvement of the oxysterol/EBI2 system in the innate immune response. First, we show that primary human macrophages express EBI2 and the enzymes needed for ligand production such as cholesterol 25-hydroxylase (CH25H), sterol 27-hydroxylase (CYP27A1), and oxysterol 7α-hydroxylase (CYP7B1). Furthermore, challenge of monocyte-derived macrophages with lipopolysaccharides (LPS) triggers a strong up-regulation of CH25H and CYP7B1 in comparison to a transient increase in EBI2 expression. Stimulation of EBI2 expressed on macrophages leads to calcium mobilization and to directed cell migration. Supernatants of LPS-stimulated macrophages are able to stimulate EBI2 signaling indicating that an induction of CH25H, CYP27A1, and CYP7B1 results in an enhanced production and release of oxysterols into the cellular environment. This is a study characterizing the oxysterol/EBI2 pathway in primary monocyte-derived macrophages. Given the crucial functional role of macrophages in the innate immune response these results encourage further exploration of a possible link to systemic autoimmunity.


Assuntos
Hidroxicolesteróis/metabolismo , Macrófagos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Cálcio/metabolismo , Movimento Celular , Células Cultivadas , Colestanotriol 26-Mono-Oxigenase/genética , Colestanotriol 26-Mono-Oxigenase/metabolismo , Família 7 do Citocromo P450 , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxicolesteróis/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Monócitos/metabolismo , Monócitos/fisiologia , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo
10.
Commun Biol ; 7(1): 104, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228886

RESUMO

Glucose homeostasis is maintained by hormones secreted from different cell types of the pancreatic islets and controlled by manifold input including signals mediated through G protein-coupled receptors (GPCRs). RNA-seq analyses revealed expression of numerous GPCRs in mouse and human pancreatic islets, among them Gpr116/Adgrf5. GPR116 is an adhesion GPCR mainly found in lung and required for surfactant secretion. Here, we demonstrate that GPR116 is involved in the somatostatin release from pancreatic delta cells using a whole-body as well as a cell-specific knock-out mouse model. Interestingly, the whole-body GPR116 deficiency causes further changes such as decreased beta-cell mass, lower number of small islets, and reduced pancreatic insulin content. Glucose homeostasis in global GPR116-deficient mice is maintained by counter-acting mechanisms modulating insulin degradation. Our data highlight an important function of GPR116 in controlling glucose homeostasis.


Assuntos
Ilhotas Pancreáticas , Humanos , Animais , Camundongos , Ilhotas Pancreáticas/metabolismo , Somatostatina/metabolismo , Insulina/metabolismo , Pulmão/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Camundongos Knockout , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA