Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Appl Clin Med Phys ; 24(4): e13899, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36637862

RESUMO

Prostate-specific membrane antigen (PSMA) is a cell surface protein highly expressed in nearly all prostate cancers, with restricted expression in some normal tissues. The differential expression of PSMA from tumor to non-tumor tissue has resulted in the investigation of numerous targeting strategies for therapy of patients with metastatic prostate cancer. In March of 2022, the FDA granted approval for the use of lutetium-177 PSMA-617 (Lu-177-PSMA-617) for patients with PSMA-positive metastatic castration-resistant prostate cancer (mCRPC) who have been treated with androgen receptor pathway inhibition and taxane-based chemotherapy. Therefore, the use of Lu-177-PSMA-617 is expected to increase and become more widespread. Herein, we describe logistical, technical, and radiation safety considerations for implementing a radiopharmaceutical therapy program, with particular focus on the development of operating procedures for therapeutic administrations. Major steps for a center in the U.S. to implement a new radiopharmaceutical therapy (RPT) program are listed below, and then demonstrated in greater detail via examples for Lu-177-PSMA-617 therapy.


Assuntos
Lutécio , Neoplasias de Próstata Resistentes à Castração , Compostos Radiofarmacêuticos , Humanos , Masculino , Lutécio/uso terapêutico , Próstata , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Compostos Radiofarmacêuticos/uso terapêutico , Resultado do Tratamento
2.
Pediatr Blood Cancer ; 69(12): e29996, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36102748

RESUMO

BACKGROUND: There is growing interest among pediatric institutions for implementing iodine-131 (I-131) meta-iodobenzylguanidine (MIBG) therapy for treating children with high-risk neuroblastoma. Due to regulations on the medical use of radioactive material (RAM), and the complexity and safety risks associated with the procedure, a multidisciplinary team involving radiation therapy/safety experts is required. Here, we describe methods for implementing pediatric I-131 MIBG therapy and evaluate our program's robustness via failure modes and effects analysis (FMEA). METHODS: We formed a multidisciplinary team, involving pediatric oncology, radiation oncology, and radiation safety staff. To evaluate the robustness of the therapy workflow and quantitatively assess potential safety risks, an FMEA was performed. Failure modes were scored (1-10) for their risk of occurrence (O), severity (S), and being undetected (D). Risk priority number (RPN) was calculated from a product of these scores and used to identify high-risk failure modes. RESULTS: A total of 176 failure modes were identified and scored. The majority (94%) of failure modes scored low (RPN <100). The highest risk failure modes were related to training and to drug-infusion procedures, with the highest S scores being (a) caregivers did not understand radiation safety training (O = 5.5, S = 7, D = 5.5, RPN = 212); (b) infusion training of staff was inadequate (O = 5, S = 8, D = 5, RPN = 200); and (c) air in intravenous lines/not monitoring for air in lines (O = 4.5, S = 8, D = 5, RPN = 180). CONCLUSION: Through use of FMEA methodology, we successfully identified multiple potential points of failure that have allowed us to proactively mitigate risks when implementing a pediatric MIBG program.


Assuntos
Análise do Modo e do Efeito de Falhas na Assistência à Saúde , Criança , Humanos , Radioisótopos do Iodo/efeitos adversos , 3-Iodobenzilguanidina/efeitos adversos , Planejamento da Radioterapia Assistida por Computador/métodos , Medição de Risco
3.
Clin Chem ; 67(10): 1415-1425, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453516

RESUMO

BACKGROUND: Biological specimens from patients who have received radiopharmaceuticals are often collected for diagnostic testing and sent to clinical laboratories. Residual radiation has long been assumed to be minimal. However, literature is sparse and may not represent the specimen volumes or spectrum of radionuclides currently seen at National Cancer Institute (NCI)-designated cancer centers. This study examined the radiopharmaceuticals associated with patient specimens received in the hospital core laboratory and assessed the potential risk of external radiation exposure to laboratory personnel. METHODS: The types and amounts of radiopharmaceuticals administered in a large metropolitan hospital system were retrospectively examined over a 20-month study period. The associated biological specimens sent to the largest core laboratory in the system for testing were evaluated. In addition, manual survey meter assessment of random clinical specimens and weekly wipe tests were performed for 44 weeks, and wearable and environmental dosimeters were placed for 6 months. RESULTS: Over 11 000 specimens, collected within 5 physical half-lives of radiopharmaceutical administration, were processed by our laboratory. Manual survey meter assessment of random clinical specimens routinely identified radioactive specimens. If held in a closed palm for >2 min, many samples could potentially deliver a 0.02 mSv effective dose of radiation. CONCLUSIONS: The laboratory regularly receives radioactive patient specimens without radioactive labels. Although the vast majority of these are blood specimens associated with low-dose diagnostic radiopharmaceuticals, some samples may be capable of delivering a significant amount of radiation. Recommendations for laboratories associated with NCI cancer centers are given.


Assuntos
Neoplasias , Radioatividade , Humanos , Laboratórios , National Cancer Institute (U.S.) , Neoplasias/diagnóstico , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Estados Unidos
4.
Pract Radiat Oncol ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38354977

RESUMO

PURPOSE: Radiopharmaceutical therapy (RPT) is a rapidly growing treatment modality. Though uncommon, patients may experience complications during their RPT treatment, which may trigger a rapid response from the hospital team. However, members of this team are typically not familiar with precautions for radiation safety. During these events, it is important to prioritize the patient's health over all else. There are some practices that can help minimize the risk of radiation contamination spread and exposure to staff while tending to the patient. METHODS AND MATERIALS: We formed a team to develop a standard protocol for handling patient emergencies during RPT treatment. This team consisted of an authorized user, radiation safety officer, medical physicist, nurse, RPT administration staff, and a quality/safety coordinator. The focus for developing this standardized protocol for RPT patient emergencies was 3-fold: (1) stabilize the patient; (2) reduce radiation exposure to staff; and (3) limit the spread of radiation contamination. RESULTS: We modified our hospital's existing rapid response protocol to account for the additional staff and tasks needed to accomplish all 3 of these goals. Each team member was assigned specific responsibilities, which include serving as a gatekeeper to restrict traffic, managing the crash cart, performing chest compressions, timing chest compressions, documenting the situation, and monitoring/managing radiation safety in the area. We developed a small, easy-to-read card for rapid response staff to read while they are en route to the area so they can be aware of and prepare for the unique circumstances that RPT treatments present. CONCLUSIONS: Though rapid response events with RPT patients are uncommon, it is important to have a standardized protocol for how to handle these situations beforehand rather than improvise in the moment. We have provided an example of how our team adapted our hospital's current rapid response protocol to accommodate RPT patients.

5.
Brachytherapy ; 20(1): 237-247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32819853

RESUMO

PURPOSE: To assist radiation oncology centers in implementing Lutetium-177-dotatate (177Lu) radiopharmaceutical therapy for midgut neuroendocrine tumors. Here we describe our workflow and how it was revised based on our initial experience on an expanded access protocol (EAP). METHODS: A treatment team/area was identified. An IV-pump-based infusion technique was implemented. Exposure-based techniques were implemented to determine completion of administration, administered activity, and patient releasability. Acute toxicities were assessed at each fraction. A workflow failure modes and effects analysis (FMEA) was performed. RESULTS: A total of 22 patients were treated: 11 patients during EAP (36 administrations) and 11 patients after EAP (44 administrations). Mean 177Lu infusion time was 37 min (range 26-65 min). Mean administered activity was 97% (range 90-99%). Mean patient exposures at 1 m were 1.9 mR/h (range 1.0-4.1 mR/h) post-177Lu and 0.9 mR/h (range 0.4-1.8 mR/h) at discharge, rendering patients releasable with instructions. Treatment area was decontaminated and released same day. All patients in the EAP experienced nausea, and nearly half experienced emesis despite premedication with antiemetics. Peripheral IV-line complications occurred in six treatments (16.7%), halting administration in 2 cases (5.6%). We transitioned to peripherally inserted central catheter (PICC)-lines and revised amino acid formulary after the EAP. The second cohort of 11 patients after EAP were analyzed for PICC-line complications and acute toxicity. Nausea and emesis rates decreased (nausea G1+ 61%-27%; emesis G1+ 23%-7%), and no PICC complications were observed. FMEA revealed that a failure in amino acid preparation was the highest risk. CONCLUSION: 177Lu-dotatate can be administered safely in an outpatient radiation oncology department.


Assuntos
Braquiterapia , Radioterapia (Especialidade) , Braquiterapia/métodos , Humanos , Lutécio/uso terapêutico , Radioisótopos , Compostos Radiofarmacêuticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA